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Аннотация: В этом тезисе рассматриваются вопросы математического 

моделирования и численного анализа трёхслойных пластин сложной формы. 

Разработана вычислительная модель, позволяющая проводить оценку 

напряжённо-деформированного состояния многослойных конструкций с 

учётом различий в физических и механических свойствах слоёв. В работе 

использованы методы конечно-элементного анализа и численного 

интегрирования. Проведённые вычислительные эксперименты показали, что 

предложенный подход обеспечивает высокую точность расчётов и 

устойчивость алгоритма при моделировании сложных геометрических форм. 

Полученные результаты могут быть использованы при проектировании 

композитных материалов, а также в инженерных и строительных 

конструкциях, где важна надёжность многослойных элементов. 
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В последние годы вопрос повышения термического сопротивления и 

упругого поведения стен и других ограждающих конструкций решается 

переходом к трехслойным конструкциям. 

Трёхслойные пластины являются частным случаем многослойных 

пластин, математические модели которых полученные согласно 

вариационному принципу Гамильтона – Остроградского приведено в работе: 

  0 dtK
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где К – кинетическая энергия системы, П – потенциальная энергия 

системы, А – потенциал внешних сил,   – операция варьирования. 

Математические модели n слойных анизотропных пластин изучены в 

работе [1]. При 2n  рассмотрим частный случай, если материалы жестких 

слоев ортотропные с главными направлениями, совпадающими с 

направлением осей координат. Получаем уравнения равновесия для 

трехслойных пластин [2-4]: 
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Уравнение равновесия (1) в векторной – матричной форме запишем в 

виде  
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 Для решения поставленной задачи изгиба трехслойной пластины со 
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сложной конфигурацией применяем вариационный метод Бубнова – 

Галеркина 5-7.  

Далее на основе этих значений определяются значения напряжений, 

моментов и усилий.  

На построении последовательности координатных функций, 

удовлетворяющие граничные условия, используем структурный метод R  - 

функций В.Л.Рвачева.  

В общем случае структуру решений, построенную методом R  - 

функций, можно представить в виде 5-7: 
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Здесь   - нормализованное уравнение границы области пластинки; 

   5,1kk

i  - некоторые полные (базисные) системы функций (степенной, 

тригонометрические полиномы и т.д.);    5,1kc k

i  - неопределенные 

коэффициенты структуры решений, подлежащие определению. 

Рассмотрим изгиб жестко-защемленной и шарнирно-опертой 

трехслойной пластины, изображенной на рис.1. 

В этом случае 

нормализованные уравнения 

границы области имеют вид: 

     f1:=sqr(R)-sqr(x)-sqr(y)>=0; 

     f2:=sqr(x-R)+sqr(y)-

sqr(r1)>=0; 

     f3:=sqr(x)+sqr(y-R)-

sqr(r1)>=0; 

     f4:=sqr(x+R)+sqr(y)-

sqr(r1)>=0; 

 

Рис.1. Круг с четырьмя 

вырезами 
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     f5:=sqr(x)+sqr(y+R)-sqr(r1)>=0; 

     ω:=(((f1 and f2) and f3) and f4) and f5, 

где R – радиус большой окружности, r1 – радиус высеченной 

окружности.  

Для проведения вычислительного эксперимента в качестве исходных 

данных при решении данной задачи имеем:  

R=1м, r1=0.2 м, h=0.01 м (толщина), Е1/Е2=25, G1/E2=0.5, G2 /E2=0.2, 

ν=0.25 (коэффициент Пуассона),[8]. 

Рассматривая значения w ( w =104 w ) по сечению ОХ (х, у=0), проведем 

численное исследование алгоритма расчета изгиба трехслойной пластины 

при жестко-защемленном граничном условии и координатах равных 10 (т.е. 

   2/21  nknkN , где nk 3) и постоянных значения узлов Гаусса при 

вычислении двукратных интегралов (т.е. 3220,10 иslutoch  ). Результаты 

расчета приведены в табл.1, график которого дается на рис.2 соответственно. 

Табл.1 

 

 (x,y) 

clut=1

0 

clut=2

0 

clut=3

2 

(-

0,7;0) 0,4183 0,5241 0,5114 

(-

0,6;0) 1,6409 1,8372 1,804 

(-

0,5;0) 3,3908 3,5081 3,4613 

(-

0,4;0) 5,2991 5,1833 5,1329 

(-

0,3;0) 7,045 6,6254 6,5785 

0

2

4

6

8

10

12

 (
-0
,7
;0
)

  
(-
0
,6
;0
)

  
(-
0
,5
;0
)

  
(-
0
,4
;0
)

 (
-0
,3
;0
)

 (
-0
,2
;0
)

 (
-0
,1
;0
)

 (
0
;0
) 

 (
0
,1
;0
)

 (
0
,2
;0
)

 (
0
,3
;0
)

 (
0
,4
;0
)

(0
,5
;0
) 

 (
0
,6
;0
)

 (
0
,7
;0
)

(x,y)

w

clut=10

clut=20

clut=32



Ilm fan taraqqiyotida raqamli iqtisodiyot va zamonaviy 

ta'limning o'rni hamda rivojlanish omillari 

 

11-To’plam 2-son Noyabr, 2025   378 

 
 

(-

0,2;0) 8,4063 7,7023 7,6616 

 

(-

0,1;0) 9,259 8,3581 8,3227 

(0;0) 9,5485 8,5778 8,5443 

(0,1;0) 9,2596 8,3592 8,3238 

(0,2;0) 8,4052 7,7027 7,662 

(0,3;0) 7,0388 6,6225 6,5758 

(0,4;0) 5,2869 5,1758 5,1259 

(0,5;0) 3,3756 3,4981 3,4522 

(0,6;0) 1,6295 1,83 1,7976 

(0,7;0) 0,415 0,523 0,5106 

Рис.2 Значения w (w =104
w ) по сечению ОХ 

(х, у=0) при nk 3 

Анализ численного исследования по полученным результатам 

показывает, что применение метода R-функций в комбинации с 

вариационным методом Бубнова – Галеркина при решении поставленной 

задачи расчета колебания трехслойных пластин со сложной конфигурацией 

вполне оправдан и дает хорошие результаты. 
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