

MORPHOLOGICAL CHANGES AFTER RECONSTRUCTIVE BLADDER SURGERY

Author: Nazokatkhon Mamasoliyeva. S.M.Madaminov

Fergana medical Institute of Public Health

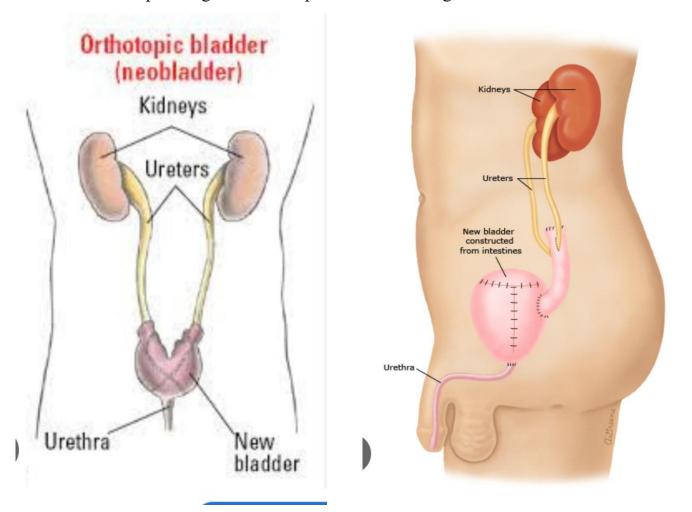
Abstract

Reconstructive bladder surgery, which involves the use of intestinal segments, is mainly performed to treat acute bladder trauma, tumors, or congenital anomalies. After such surgery, the "new" bladder undergoes morphological changes related to the adaptation of intestinal tissues, epithelial differentiation, and reorganization of muscle layers. This article provides a detailed account of these changes.

Keywords: reconstructive surgery, morphological changes, new bladder, orthotopic neobladder.

This topic focuses on studying the morphological and cellular changes occurring after reconstructive surgery of the bladder. It aims to help improve the rehabilitation and recovery process for patients. Before discussing the morphological changes, we explore the history and statistics of reconstructive surgery. Understanding its history informs us about its reliability, while statistics confirm its relevance.

There are several techniques for bladder reconstruction; our study is based on **orthotopic neobladder** surgery. This technique involves reconstructing the bladder using intestinal segments in patients with bladder loss and has a long developmental history. Its origins trace back to the early 1900s, when initial surgical attempts replaced urinary pathways using simple intestinal diverticula. These early methods had limited success due to restricted urinary conduction and infection risks.

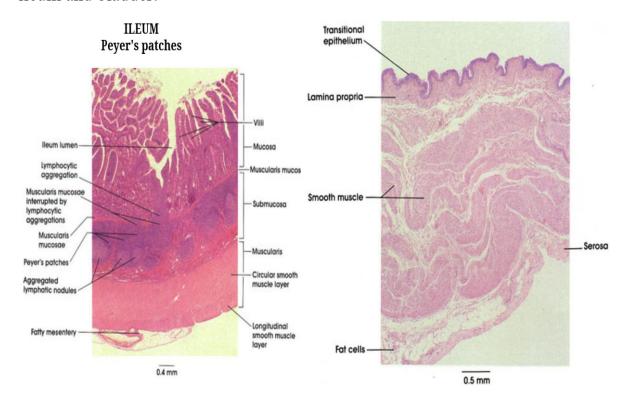

Mid-20th century innovations introduced the use of intestinal segments (ileum and colon) for bladder reconstruction. Techniques like **Bricker's ileal**

conduit became the main approach. However, metabolic complications emerged from diverting urine into the intestines, creating a need for modern orthotopic neobladder procedures.

By the 1980s, advancements in surgical technology revolutionized the orthotopic neobladder. Surgeons like **Koch** and **Hautmann** developed successful techniques. Koch's **continent reservoir** used intestinal segments to create a controlled urine outlet. Hautmann's neobladder used a large anatomical ileum segment to reconstruct a bladder in its natural position.

In the 1990s, orthotopic neobladder surgery became widespread in urology. Minimally invasive and robotic technologies further enhanced outcomes. Below are sample images of orthotopic neobladder surgeries from social media sources.

Functional and Morphological Comparison: Ileum vs. Bladder

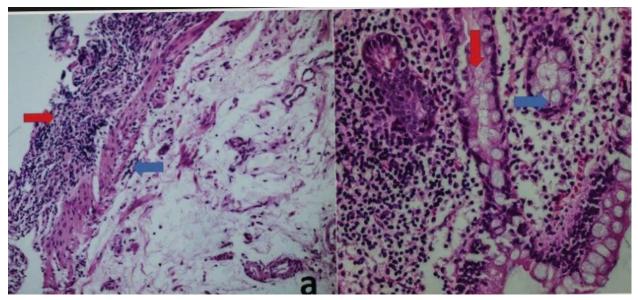


Parameter	Ileum	Urinary Bladder
Structure	Cylindrical segment of the small intestine	Hollow, variable volume sac
Mucosa	Contains villi and microvilli, large surface area	Smooth mucosa, muscular layer critical for function
Submucosa	Rich in vessels and lymphoid nodules	Many vessels, fewer lymphoid nodules
Epithelium	Simple columnar with goblet cells (mucus-producing)	Transitional (urothelium), protects from toxins
Function	Nutrient and fluid absorption	Storage and release of urine
Muscular Layer	Two layers: inner circular, outer longitudinal	Three layers: inner longitudinal, middle circular, outer longitudinal
Special Structures	Peyer's patches, villi	Sphincters, trigone area (valvular function)
Oxygen Demand	High (active absorption and processing)	Moderate (active during urination)

Parameter	Ileum	Urinary Bladder
Covering Layer	Serosa or adventitia	Mostly covered with adventitia
Regeneration Ability	High (rapid cell turnover)	Limited
Metaplasia Potential	Rare	Common in chronic inflammation (e.g., urothelial metaplasia)

The differences show that the ileum and bladder have contrasting roles—nutrient absorption versus urine storage. Below are microscopic images of the ileum and bladder:

Postoperative Changes in Ileal Morphology for Bladder Function



These changes were studied through interviews, urine analysis, MRI, ultrasound, and biopsy in patients undergoing orthotopic neobladder surgery. Findings show that major changes do not occur within the first three months and mostly stop after one year. Their impact depends on the patient's lifestyle and physiology.

Morphological		
Change	Description	Impact
	Intestinal epithelium	
	adapts to urinary	
Epithelial	environment, showing	
Adaptation	metaplasia and	Provides protection but
(Metaplasia)	hyperplasia	increases infection risk
		Promotes bacterial
Mucus	Continued secretion by	growth, risk of
Production	intestinal segments	inflammation
Muscular Tissue	Atrophy or hypertrophy	Disrupts bladder storage
Changes	of muscle layers	and voiding function
	Fibrotic processes and	
	loss of elasticity in	Decreased compliance
Fibrosis	bladder walls	and function
Microbiome	Shifts in microbial	Alters immune response
Changes	population in neobladder	and adaptation

Below are microscopic views of the ileum before and after surgery:

- Left Image: Shows muscle layer (blue arrow), inflamed mucosa (red arrow), flattened villi and crypts.
- **Right Image**: Normal ileum with goblet cells (blue), intact crypts (red), and visible villi.

Conclusion

First, exposure to urine creates a state of acute irritation in such reservoirs. Second, environmental changes promote development of a protective phenotype in the ileal mucosa, rather than absorption-focused tissue. As mentioned earlier, not all changes are beneficial. Hence, patient care must include:

- Regular Medical Checkups: For early complication detection.
- **Scheduled Urination**: Every 3–4 hours, even without urge. Nighttime alarms may help.
 - **Hydration**: 2–2.5 liters of clean water daily to flush the urinary tract.
- Diet: Limit salt, prefer alkaline foods (vegetables, fruits), avoid caffeine/alcohol.
 - Hygiene: Maintain cleanliness during urination to prevent infection.
 - Physical Activity: Gradual return, avoid heavy exertion, Kegel exercises.

- Warning Signs: Blood in urine, difficulty urinating, abdominal pain, fever—seek immediate care.
- Long-Term Monitoring: Regular biopsies or screenings for bladder cancer may be necessary.

These recommendations can help improve patient quality of life and preserve long-term health.

References:

- 1. Häcker, S., et al. (2012). European Urology, 61(3), 592–602.
- 2. Hussain, M., et al. (2016). Journal of Urology, 195(5), 1421–1427.
- 3. Günay, N., et al. (2017). *The Journal of Urology*, 198(4), 945–950.
- 4. Arslan, M., et al. (2019). *International Journal of Urology*, 26(1), 75–81.
- 5. Oelschlager, A., et al. (2018). *European Urology Focus*, 4(5), 776–782.
 - 6. Sarikaya, S., et al. (2020). *BJU International*, 125(6), 898–906.
- 7. Trost, J., et al. (2021). *Journal of Urological Surgery*, 37(9), 1015–1021.
- 8. Mavlyanov F.SH et al. *Urinary Tract Obstruction Diseases in Children*, Monograph.