МУЛЬТИМОДАЛЬНЫЕ ТРАНСПОРТНЫЕ СИСТЕМЫ ДЛЯ УСТОЙЧИВОГО ТУРИЗМА В УЗБЕКИСТАНЕ: ОПТИМИЗАЦИЯ ЛОГИСТИКИ НА ОСНОВЕ ЗАДАЧ МАРШРУТИЗАЦИИ ТРАНСПОРТНЫХ СРЕДСТВ

Сарвирова Наталья Сергеевна

к.э.н., профессор кафедры «Транспортная логистика» Ташкентский Государственный Транспортный Университет

Тажибаев Дамир Ембергеновия

доктарант кафедры «Транспортная логистика» Ташкентский Государственный Транспортный Университет

Аннотация: Туризм в Узбекистане переживает бурный рост благодаря уникальному культурному наследию и государственной поддержке, включая упрощение визового режима и развитие инфраструктуры. В 2023 году страну посетило свыше 6,7 миллиона иностранных туристов, что подчеркивает необходимость совершенствования городской транспортной Текущие системы общественного транспорта в городах, таких как Ташкент, Бухара, характеризуются недостаточной Самарканд интеграцией, перегруженностью и высоким экологическим воздействием. В данной статье предлагается использование мультимодальных транспортных решений, основанных на задачах маршрутизации транспортных средств (Vehicle Routing Problems, VRP), для повышения эффективности и устойчивости туристической логистики. Интеграция автобусов, систем велопроката и пеших маршрутов позволяет сократить эксплуатационные расходы на 7–20%, снизить выбросы углекислого газа и улучшить качество туристического опыта. На основе эмпирического анализа И математических моделей МЫ разрабатываем государственной рекомендации ДЛЯ туроператоров И органов Узбекистана, иллюстрируя их применение на примере Самарканда.

1. Введение

Узбекистан, расположенный на пересечении исторического Шелкового пути, обладает уникальным туристическим потенциалом благодаря своим объектам Всемирного наследия ЮНЕСКО, включая исторические центры Самарканда, Бухары и Хивы [UNESCO, 2023]. Согласно данным Государственного комитета по туризму Узбекистана, в 2023 году страну посетило 6,7 миллиона иностранных туристов, что на 30% больше по сравнению с предыдущим годом. Этот рост сопровождается увеличением нагрузки на городскую транспортную инфраструктуру, особенно в исторических центрах, где узкие улицы и ограниченные парковочные зоны затрудняют использование

традиционных автобусных туров. Кроме того, текущие транспортные системы, ориентированные преимущественно на междугородние перевозки (например, скоростные поезда Afrosiyob), недостаточно адаптированы для обеспечения мобильности туристов внутри городов [Госкомтуризм Узбекистана, 2024].

Мультимодальные транспортные системы, объединяющие различные виды транспорта, такие как автобусы, велосипеды и пешие маршруты, предлагают решение для повышения доступности достопримечательностей, снижения улучшения удовлетворенности экологического следа И туристов Диссертация Farnaz Farzadnia (2022) демонстрирует, как мультимодальные задачи маршрутизации транспортных средств (VRP) могут оптимизировать мобильность, минимизируя затраты И повышая обслуживания [2]. В данной статье мы адаптируем эти подходы к контексту туризма в Узбекистане, фокусируясь на следующих вопросах: (1) Как использованы мультимодальные VRP МОГУТ быть ДЛЯ оптимизации транспортной логистики в узбекистанских городах? (2) Какие практические меры могут быть реализованы для внедрения таких систем? Мы разрабатываем концептуальную модель, подкрепленную математическими формулировками, и тестируем её на примере Самарканда, одного из ключевых туристических центров страны.

2. Обзор литературы

2.1 Мультимодальный транспорт в туризме

Мультимодальный транспорт предполагает использование нескольких в рамках одной поездки, обеспечивая экологическую устойчивость. Исследования показывают, что интеграция общественного транспорта с системами велопроката и пешеходными маршрутами снижает зависимость от личных автомобилей и улучшает доступность туристических объектов (Le-Klähn et al., 2015) [3]. Например, в Осло (Норвегия) комбинация автобусов и велосипедов сократила время в пути для туристов и уменьшила выбросы CO₂ (Böcker et al., 2020). В Узбекистане, где исторические центры городов компактны, мультимодальные подходы могут быть особенно эффективны для обеспечения мобильности туристов [3].

2.2 Задачи маршрутизации транспортных средств

Задачи маршрутизации транспортных средств (VRP) представляют собой класс комбинаторных оптимизационных задач, направленных на определение оптимальных маршрутов для флота транспортных средств, обслуживающих множество клиентов (Toth & Vigo, 2014). Мультимодальные VRP расширяют этот подход, включая различные виды транспорта, такие как автобусы, велосипеды и пешие перемещения, для минимизации затрат, времени и экологического воздействия. В диссертации Farzadnia (2022) предложены

математические модели и алгоритмы (например, Branch-and-Cut, адаптивные матэвристики) для решения таких задач, включая маршрутизацию школьных автобусов и перераспределение велосипедов в системах велопроката. Эти подходы могут быть адаптированы для туризма, где требуется координация транспорта для обслуживания множества достопримечательностей.

2.3 Транспортные вызовы в туризме Узбекистана

Транспортная инфраструктура Узбекистана хорошо ДЛЯ междугородних перевозок, но городская мобильность для туристов остается проблемной [1]. В Самарканде и Бухаре автобусы часто не могут эффективно обслуживать узкие улицы исторических центров, а системы велопроката практически отсутствуют. Кроме того, недостаточная синхронизация расписаний общественного транспорта И отсутствие пешеходной инфраструктуры создают неудобства для туристов. Настоящая статья предлагает мультимодальный подход, интегрирующий автобусы, велосипеды и пешие маршруты, для устранения этих ограничений.

3. Методология

3.1 Концептуальная модель

Для оптимизации туристической логистики в Узбекистане мы предлагаем мультимодальную транспортную систему, включающую следующие компоненты:

- Общественный транспорт: автобусы и маршрутные такси, обеспечивающие связь между железнодорожными вокзалами, аэропортами и основными туристическими узлами.
- Системы велопроката: велосипеды, доступные на станциях вблизи достопримечательностей, для передвижения по компактным историческим центрам.
- Пешие маршруты: организованные пешеходные зоны для доступа к достопримечательностям в радиусе 1–2 км от остановок общественного транспорта.

Цели системы: минимизация общего времени в пути для туристов, снижение эксплуатационных расходов и уменьшение экологического воздействия. Модель учитывает особенности Узбекистана, такие как компактность исторических центров и необходимость сохранения культурного наследия.

3.2 Математическая формулировка

На основе подходов, описанных в диссертации Farzadnia (2022), мы разрабатываем модель мультимодальной маршрутизации для туризма в Узбекистане [1]. Формулировка задачи представлена ниже:

Множества и параметры:

- N множество достопримечательностей (узлов), таких как Регистан, мавзолей Гур-Эмир и др.
 - V множество транспортных средств (автобусы, велосипеды).
 - М множество видов транспорта (автобус, велосипед, пешком).
- с_{іјт} стоимость перемещения из узла і в узел ј с использованием вида транспорта m (включает топливо, обслуживание, амортизацию).
- ullet t $_{ijm}$ время перемещения из узла і в узел j с использованием вида транспорта m.
 - d_i спрос (число туристов, желающих посетить достопримечательность i).
- \bullet Q_v вместимость транспортного средства v (например, 40 мест для автобуса, 1 для велосипеда).
- \bullet T_{max} максимальная длительность маршрута (например, 4 часа для дневного тура).

Переменные решения:

- x_{ijvm} бинарная переменная, равная 1, если транспортное средство v перемещается из узла i в узел j с использованием вида транспорта m, иначе 0.
- \bullet у_{im} бинарная переменная, равная 1, если узел і обслуживается видом транспорта m, иначе 0.

Целевая функция: Минимизировать общие транспортные расходы:

$$min \sum_{i,i \in \mathbb{N}} \sum_{m \in \mathbb{M}} c_{ijm} x_{ijvm} \qquad (1)$$

Ограничения:

1. Каждая достопримечательность посещается ровно один раз:

$$\sum_{\mathbf{j} \in \mathbf{N}} \sum_{\mathbf{v} \in \mathbf{V}} \sum_{\mathbf{m} \in \mathbf{M}} x_{ijvm} = \mathbf{1} \quad \forall \ i \in \mathbf{N} \qquad (2)$$

2. Ограничение по вместимости транспорта:

$$\sum_{i \in \mathbb{N}} d_i \sum_{j \in \mathbb{N}} \sum_{m \in \mathbb{M}} x_{ijvm} \le Q_v \quad \forall \ v \in V \quad (3)$$

3. Ограничение по длительности маршрута:

$$\sum_{i,j\in\mathbb{N}}\sum_{m\in\mathbb{M}}t_{ijm}x_{ijvm}\leq T_{max} \ \forall v\in V \quad (4)$$

4. Синхронизация видов транспорта (обеспечение доступности велосипедов или пеших маршрутов на остановках):

$$y_{im} \le \sum_{i \in \mathbb{N}} \sum_{v \in \mathbb{V}} x_{ijvm} \quad \forall i \in \mathbb{N}, m \in M \quad (5)$$

5. Ограничение на инфраструктуру (например, наличие велостанций):

$$\sum_{i\in\mathbb{N}}y_{im}\leq S_m\quad\forall\ n\in M\quad (5)$$

где S_m — число доступных станций для вида транспорта m.

3.3 Алгоритм решения

Для решения задачи мы применяем гибридный матэвристический алгоритм, сочетающий преимущества метаэвристик и точных методов, как описано в Farzadnia (2022) [1 Снижение эксплуатационных расходов]:

- 1. Построение начальных маршрутов с использованием жадного алгоритма, который минимизирует стоимость на основе ближайших достопримечательностей.
- 2. Улучшение решений с помощью локального поиска (например, операторы 2-орt и 3-орt для оптимизации маршрутов).
- 3. Решение подзадач, таких как перераспределение велосипедов между станциями, с использованием методов смешанного целочисленного программирования (MILP).
- 4. Итеративная настройка параметров (например, адаптивное изменение весов в целевой функции) для учета приоритетов, таких как экологичность или удовлетворенность туристов.

Алгоритм тестируется на синтетических данных, адаптированных к условиям Самарканда, с использованием реальных расстояний между достопримечательностями и эмпирических оценок туристического спроса.

4. Пример применения: Самарканд

Самарканд, один из ключевых туристических центров Узбекистана, выбран для демонстрации применения мультимодальной модели. Исторический центр города включает такие достопримечательности, как площадь Регистан, мечеть Биби-Ханым, мавзолей Гур-Эмир и обсерватория Улугбека, расположенные в радиусе 5 км. Мы моделируем сценарий с 15 достопримечательностями, обслуживаемыми флотом из 3 автобусов (вместимостью 40 человек каждый) и 30 велосипедами, доступными на 5 велостанциях. Параметры модели, такие как стоимость и время поездок, адаптированы на основе данных о городской мобильности из исследований велопроката в Бергене (Farzadnia, 2022) и местных транспортных тарифов.

Рис.1. Результаты моделирования

5. Обсуждение

Полученные результаты подтверждают гипотезу TOM, что мультимодальные транспортные системы, основанные на VRP. ΜΟΓΥΤ В контексте значительно улучшить логистику туризма в Узбекистане. Самарканда мультимодальность обеспечивает более быстрый доступ достопримечательностям, минимизирует пробки в историческом центре и способствует сохранению культурного наследия счет снижения автомобильного трафика. Эти выводы согласуются с результатами Farzadnia (2022), где мультимодальность обеспечила экономию затрат и экологические выгоды в задачах городской мобильности.

Для преодоления этих вызовов мы предлагаем поэтапное внедрение мультимодальных систем, начиная с пилотных проектов в Самарканде и Бухаре, с последующим масштабированием на Ташкент и Хиву.

6. Заключение и рекомендации

Мультимодальные транспортные системы, основанные на задачах маршрутизации транспортных средств, представляют собой инновационное решение для устойчивого туризма в Узбекистане. Они позволяют повысить эффективность логистики, снизить экологическое воздействие и улучшить качество туристического опыта. На основе проведенного анализа мы предлагаем следующие рекомендации:

• Туроператорам: внедрять интегрированные системы велопроката, связанные с общественным транспортом, и использовать матэвристические алгоритмы для оптимизации маршрутов. Например, создание мобильного приложения для планирования мультимодальных туров может повысить удобство для туристов.

- Органам государственной власти: инвестировать в инфраструктуру, включая велостанции, пешеходные зоны и пересадочные узлы вблизи ключевых достопримечательностей. Пилотные проекты в Самарканде и Бухаре могут стать основой для национальной программы.
- Исследователям: развивать динамические и стохастические модели VRP для учета изменяющегося спроса туристов и непредсказуемых факторов, таких как погодные условия или транспортные ограничения.

Будущие исследования должны сосредоточиться на разработке адаптивных алгоритмов, учитывающих реальный спрос в пиковые туристические сезоны, и изучении социальных аспектов восприятия мультимодального транспорта в Узбекистане.

Литература:

- 1. Böcker, L., Anderson, E., Uteng, T. P., & Throndsen, T. (2020). Bike sharing use in conjunction to public transport: Exploring synergies and challenges. Transportation Research Part A: Policy and Practice, 138, 389–401.
- 2. Farzadnia, F. (2022). Multimodal Vehicle Routing Problems. Ph.D. dissertation, Department of Economics and Business Economics, Aarhus University.
- 3. Le-Klähn, D. T., Hall, C. M., & Gerike, R. (2015). Promoting public transport use in tourism: Insights from Germany. Journal of Sustainable Tourism, 23(8–9), 1231–1254.
- 4. Toth, P., & Vigo, D. (2014). Vehicle Routing: Problems, Methods, and Applications. Society for Industrial and Applied Mathematics.