
JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 268 268

ENSURING USER SECURITY IN MOBILE APPLICATIONS:

CYBERSECURITY TECHNIQUES

Qurbonov Behruz Amrulloyevich

Tashkent University of Information Technologies

named after Muhammad al-Khwarizmi 3rd year student

Faculty of Software Engineering

Recipient of the Muhammad al-Khwarizmi scholarship

Yondoshaliyev Alisher Elyorjon o‘g‘li

Tashkent University of Information Technologies

named after Muhammad al-Khwarizmi 2rd year student

Faculty of Software Engineering

Abstract: Mobile applications have become integral to daily life, facilitating

communication, commerce, and entertainment. However, their widespread adoption

has made them prime targets for cyberattacks, such as data breaches, malware, and

phishing. Ensuring user security in mobile applications is critical to protecting sensitive

data and maintaining trust. Cybersecurity techniques, enhanced by Artificial

Intelligence (AI), encryption, and secure coding practices, play a pivotal role in

mitigating these risks. This article explores the fundamentals of securing mobile

applications, addressing key techniques, challenges, solutions, and mathematical

formulations to quantify security metrics. It also includes algorithms to support

implementation, focusing on practical approaches for developers.

Keywords: Cybersecurity, Data Encryption: Symmetric and Asymmetric, Multi-

Factor Authentication , Phishing Detection.

 Securing mobile applications involves a combination of cryptographic methods,

secure coding, authentication mechanisms, and AI-driven techniques. Below are key

approaches, supported by Python libraries and mathematical formulations.

Data Encryption

Encryption protects sensitive data, such as user credentials and personal

information, during storage and transmission.

• Symmetric Encryption: Uses algorithms like AES (Advanced Encryption

Standard) to encrypt data with a single key. The encryption time is:

where T_enc is encryption time, D is data size, and R_enc is the encryption rate

(e.g., MB/s).

• Asymmetric Encryption: Uses RSA for secure key exchange. The security

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 269 269

strength depends on key size, with computational complexity:

where n is the key length in bits.

 • Implementation: Pythons pycryptodome library supports AES and RSA. For

example, AES encryption ensures data confidentiality in transit.

Authentication and Authorization

 Strong authentication prevents unauthorized access, while authorization ensures

users access only permitted resources.

• Multi-Factor Authentication (MFA): Combines passwords, biometrics, and

tokens. The probability of unauthorized access is:

where P_unauth is the probability of bypassing all k factors, and P_i is the failure

probability of factor i.

• OAuth 2.0: Used for secure API access, implemented with Pythons authlib. The

token validation time is:

where T_val is validation time, T_sign is signing time, and T_verif y is

verification time.

Secure Coding Practices

Secure coding minimizes vulnerabilities like SQL injection and cross-site

scripting (XSS).

• Input Validation: Sanitizes user inputs to prevent injection attacks. The error rate

for unvalidated inputs is:

where Einput is the error rate, Nvuln is vulnerable inputs, and Ntotal is total

inputs. • Implementation: Use Pythons flask with input sanitization libraries like

bleach to prevent XSS.

AI-Driven Threat Detection

AI enhances security by detecting anomalies and predicting threats in real-time.

• Anomaly Detection: Machine learning models like Isolation Forest identify

unusual behavior. The anomaly score is:

where s(x, n) is the anomaly score, E(h(x)) is the average path length, and c(n) is

the average path length for n samples.

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 270 270

• Phishing Detection: Natural Language Processing (NLP) models analyze text

inputs (e.g., URLs). The classification accuracy is:

where T P, T N, F P, F N are true positives, true negatives, false positives, and

false negatives.

Secure Data Storage

Secure storage protects data at rest using encryption and access controls.

• Database Encryption: Encrypts sensitive fields using pycryptodome. The storage

overhead is:

where O_storage is storage overhead, D is original data size, and α is the

encryption overhead factor.

Mobile devices have limited processing power and battery life, complicating

security implementations.

Problem: Resource-intensive algorithms like RSA increase latency:

where Lcomp is computational latency, C is computational complexity, and

Rdevice is device processing rate.

Solution: Use lightweight encryption (e.g., AES-128) and offload complex tasks

to cloud servers using AWS Lambda. Optimize algorithms to reduce complexity:

where Copt is optimized complexity, and β is a reduction factor (e.g., 0.5).

Data Privacy

Mobile apps often handle sensitive user data, raising privacy concerns under

regulations like GDPR.

Problem: Centralized data storage risks breaches, with privacy loss:

where ϵ is the privacy budget, P(M|D) and P(M|D′) are model output probabilities

for datasets D and D′ .

Solution: Implement federated learning for local model training:

where ∆W is the aggregated model update, ∇Li(W) is the gradient from device i,

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 271 271

and k is the number of devices. Use end-to-end encryption for data transmission.

Key Algorithms for Mobile App Security

Ensuring user security in mobile applications requires a multifaceted approach

combining encryption, authentication, secure coding, and AI-driven threat detection.

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 272 272

Challenges like resource constraints, data privacy, user errors, and evolving threats are

mitigated through lightweight algorithms, federated learning, user education, and

continuous model updates. Mathematical formulations and algorithms, such as AES

encryption, Isolation Forest, and adversarial training, provide a rigorous foundation for

secure implementations. By leveraging Python libraries and best practices, developers

can build robust mobile apps that protect user data and maintain trust in an increasingly

threat-prone digital landscape.

REFERENCES

1. Owusu, E., et al. (2012). Investigating the Predictability of Secure Contexts on

Smartphones . Proceedings of the 2012 ACM Conference on Computer and

Communications Security (CCS).

2. Enck, W., et al. (2010). Understanding Android Security . IEEE Transactions on

Mobile Computing.

3. Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android

Permissions Demystified . Proceedings of the 2011 ACM Conference on Computer

and Communications Security.

4. ISO/IEC 27001:2013 – Information technology — Security techniques —

Information security management systems — Requirements .

5. Zhang, Y., et al. (2013). Analyzing Private Information Exposure in Android

Applications . IEEE International Conference on Software Security and Reliability.

6. Shabtai, A., et al. (2012). Google Play Store Malware Analysis Using Machine

Learning . Computers & Security.

7. The Open Web Application Security Project (OWASP). (2021). Mobile Top 10

Vulnerabilities . https://owasp.org/www-project-mobile-security/

8. Zhi, L., & Qing, H. (2014). A Framework for Secure Communication in Android

Mobile Applications . Journal of Network and Computer Applications.

9. Spreitzer, R., & Moonsamy, V. (2016). Practical Evaluation of Lightweight

Cryptographic Algorithms for Mobile Devices . IEEE Access.

10. Balebako, R., Lin, J., & Cranor, L.F. (2013). Privacy Management in Mobile

Ecosystems: The State of the Art . IEEE Security & Privacy.

https://scientific-jl.com/new
https://owasp.org/www-project-mobile-security/

