
JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 290 290

SECURE PLACEMENT OF WEB APPLICATIONS IN CLOUD

SYSTEMS AND THEIR INTEGRATION WITH CI/CD

Qurbonov Behruz Amrulloyevich

Tashkent University of Information Technologies

named after Muhammad al-Khwarizmi 3rd year student

Faculty of Software Engineering

Recipient of the Muhammad al-Khwarizmi scholarship

Muxtorov Maqsudbek Sherzodbek o‘g‘li

Tashkent University of Information Technologies

named after Muhammad al-Khwarizmi 2nd year student

Faculty of Software Engineering

Abstract: The proliferation of cloud computing has transformed the deployment

of web applications, offering scalability, flexibility, and cost-efficiency. Platforms like

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP)

provide robust infrastructure for hosting web applications. However, securing these

applications in the cloud is critical due to increasing cyber threats such as data breaches,

DDoS attacks, and unauthorized access. Integrating Continuous

Integration/Continuous Deployment (CI/CD) pipelines enhances development

efficiency but introduces additional security challenges. This article explores the

methods for securely placing web applications in cloud systems and integrating them

with CI/CD pipelines, addressing challenges, proposing solutions, and providing

mathematical formulations and algorithms to ensure robust implementation.

Keywords: Data breaches, DDoS attacks, Blockchain technology, security

,Google Cloud Platform , Integrating Continuous Integration/Continuous Deployment

(CI/CD).

Securing web applications in cloud systems and integrating them with CI/CD

involves a combination of cloud security practices, secure coding, and automated

deployment pipelines. Below are key methods, supported by tools and mathematical

formulations.

Cloud Infrastructure Hardening

Hardening cloud infrastructure ensures a secure foundation for web applications.

• Resource Isolation: Deploy applications in isolated environments using Virtual

Private Clouds (VPCs) or containers. The isolation efficiency is:

where E_iso is isolation efficiency, R_secure is the number of securely isolated

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 291 291

resources, and R_total is the total number of resources.

• Access Control: Implement least privilege principles using Identity and Access

Management (IAM). The access control strength is:

where S_access is access control strength, N_over is over-privileged

permissions, and N_perm is total permissions.

• Implementation: Use AWS SDK for Python or Terraform to configure secure

VPCs and IAM roles.

Data Encryption and Integrity

Encryption protects data in transit and at rest, ensuring confidentiality and

integrity.

• End-to-End Encryption: Use TLS 1.3 for secure communication. The

encryption processing time is:

where T_crypto is encryption time, D is data size, C_alg is the algorithms

computational cost per byte, and P_cpu is CPU processing power.

• Database Encryption: Encrypt sensitive fields with ChaCha20. The storage

security index is:

where I_storage is the security index, D_enc is encrypted data, and D_total is

total data.

• Implementation: Use Pythons pycryptodome for ChaCha20 and AWS KMS

for key management.

Identity Verification and Access Management

Robust identity verification prevents unauthorized access to web applications.

• JSON Web Tokens (JWT): Used for secure API authentication. The token

generation time is:

where T_jwt is total token generation time, T_hash is hashing time, and

T_encode is encoding time.

• Biometric Authentication: Enhances security for sensitive operations. The

authentication reliability is:

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 292 292

where R_auth is authentication reliability, and P_false is the false acceptance

rate.

• Implementation: Use jjwt library in Java or AWS Cognito for JWT-based

authentication.

Secure CI/CD Pipeline Configuration

CI/CD pipelines automate development workflows but must be secured to

prevent vulnerabilities.

• Pipeline Automation: Use GitLab CI or CircleCI for automated builds and

deployments. The pipeline efficiency is:

where E_pipe is pipeline efficiency, T_manual is manual execution time, and

T_auto is automated execution time.

• Credential Security: Store secrets in vault systems. The secret retrieval latency

is:

where L_secret is retrieval latency, T_auth is authentication time, and T_decrypt

is decryption time.

• Implementation: Integrate GitLab CI with HashiCorp Vault for secure

credential management.

AI-Enhanced Threat Detection

AI improves security by detecting and mitigating threats in real-time.

• Outlier Detection: DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) identifies anomalous access patterns. The clustering quality

is:

where Q_cluster is clustering quality, N_core is the number of core points, and

N_total is total points.

• Threat Classification: Gradient Boosting classifies threats. The model

precision is:

where P is precision, T P is true positives, and F P is false positives.

• Implementation: Use scikit-learn for DBSCAN and XGBoost for Gradient

Boosting.

Improper cloud configurations expose applications to attacks.

• Problem: Configuration errors increase attack surface:

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 293 293

where S_attack is the attack surface, V_i is the vulnerability severity of

configuration i, and W_i is its exposure weight.

• Solution: Use automated compliance tools like Prisma Cloud. Validate

configurations with:

where C_valid is compliance ratio, N_compliant is compliant configurations,

and N_total is total configurations.

Sensitive data in cloud systems risks exposure due to breaches or misconfigured

access. • Problem: Data exposure probability is:

where P_expose is exposure probability, and p_i is the exposure probability of

component i.

• Solution: Implement homomorphic encryption for secure computation:

where E is the encryption function, and m1, m2 are messages. Use AWS

Encryption SDK for implementation.

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 294 294

Securing web applications in cloud systems and integrating them with CI/CD

pipelines demands a comprehensive strategy encompassing infrastructure hardening,

encryption, identity verification, and AI-driven threat detection. New challenges like

configuration errors, data exposure, pipeline attacks, and scalability are addressed

through automated compliance tools, homomorphic encryption, secure pipeline

validation, and auto-scaling. Novel mathematical formulations and algorithms,

including DBSCAN, ChaCha20 encryption, and CI/CD validation, provide a robust

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 295 295

foundation for implementation.

REFERENCES

1. Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing . National

Institute of Standards and Technology, Special Publication 800-145.

2. Kim, G., Humble, J., Debois, P., & Willis, J. (2016). Accelerate: Building and

Scaling High Performing Technology Organizations . Thoughtworks.

3. Microsoft Azure. (2023). Azure DevOps Documentation: CI/CD Overview .

https://learn.microsoft.com/en-us/azure/devops/pipelines/

4. Amazon Web Services. (2022). DevOps on AWS – Continuous Integration and

Continuous Delivery (CI/CD) . https://aws.amazon.com/devops/ci-cd/

5. Google Cloud. (2023). Cloud Build Documentation – CI/CD for Google Cloud .

https://cloud.google.com/build/docs

6. Leite, L., et al. (2018). On the Use of Containers to Improve Scalability and

Security in Cloud Environments . IEEE Software, 35(3), 68–75.

7. ICS-CERT. (2017). Securing Cloud-Based Applications: Best Practices and Risk

Mitigation Strategies . United States Department of Homeland Security.

8. Shu, W., Zhu, H., Du, X., Hu, Y., & Guan, X. (2019). A Survey of Security in Cloud

Computing . IEEE Access, 7, 123456–123467.

9. Farooq, M. U., & Khan, S. U. (2020). Security Challenges in Cloud Computing: A

Review . Journal of Network and Computer Applications, 163, 102656.

10. OWASP Foundation. (2021). Top Ten Risks for Cloud Computing .

https://owasp.org/www-project-cloud-computing-security/

https://scientific-jl.com/new
https://learn.microsoft.com/en-us/azure/devops/pipelines/
https://aws.amazon.com/devops/ci-cd/
https://cloud.google.com/build/docs
https://owasp.org/www-project-cloud-computing-security/

