
JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 296 296

TECHNICAL ASPECTS OF CREATING AN EFFECTIVE PROGRAM FOR

IOT DEVICES WITH ARTIFICIAL INTELLIGENCE IN PYTHON

Qurbonov Behruz Amrulloyevich

Tashkent University of Information Technologies

named after Muhammad al-Khwarizmi 3rd year student

Faculty of Software Engineering

Recipient of the Muhammad al-Khwarizmi scholarship

Muxtorov Maqsudbek Sherzodbek o‘g‘li

Tashkent University of Information Technologies

named after Muhammad al-Khwarizmi 2nd year student

Faculty of Software Engineering

Abstract: The Internet of Things (IoT) has transformed industries by enabling

interconnected devices to collect, process, and share data in real-time. When integrated

with Artificial Intelligence (AI), IoT devices can perform intelligent tasks such as

predictive maintenance, anomaly detection, and automated decision-making. Python,

with its extensive libraries like TensorFlow, scikit-learn, and paho-mqtt, is a powerful

language for developing AI-driven IoT programs. However, creating effective

programs for IoT devices involves addressing technical challenges such as resource

constraints, real-time processing, and security. This article explores the technical

aspects of developing AI-driven IoT programs in Python, providing fresh methods,

solutions to challenges, new mathematical formulations, and novel algorithms to

ensure efficient and secure implementations.

Keywords: Internet of Things (IoT), Artificial Intelligence (AI), TensorFlow,

libraries : scikit-learn and paho-mqtt , real-time processing, security.

Developing effective AI programs for IoT devices involves data acquisition,

processing, model training, and deployment. Below are key methods, supported by

Python libraries and new mathematical formulations.

Real-Time Data Acquisition

IoT devices generate continuous data streams that require efficient acquisition.

• MQTT Protocol: Use paho-mqtt for lightweight data transfer. The data ingestion

rate is:

where R_ingest is the ingestion rate, D_recv is received data volume, and

T_cycle is the communication cycle time.

• Data Buffering: Buffer data to handle intermittent connectivity. The buffer

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 297 297

efficiency is:

where E_buf fer is buffer efficiency, D_proc is processed data, and D_total is

total buffered data.

Data Preprocessing and Feature Engineering

Preprocessing ensures data quality for AI models, addressing noise and

heterogeneity.

• Data Cleaning: Remove noise using filtering. The noise reduction ratio is:

where R_noise is the noise reduction ratio, N_noise is noisy data points, and

N_total is total data points.

• Feature Extraction: Extract relevant features using time-series analysis. The

feature relevance score is:

where S_feature is the relevance score, w_i is the weight of feature i, and I_i is

its information gain. Use pandas for cleaning and tsfresh for feature extraction.

AI Model Development

AI models enable intelligent processing of IoT data, such as classification or

forecasting. • Edge-Based Inference: Deploy lightweight models on IoT devices. The

inference latency is:

where L_infer is inference latency, C_model is model computational

complexity, and P_device is device processing power.

• Time-Series Forecasting: Use Prophet for forecasting. The forecasting

accuracy is:

where A_forecast is accuracy, y_t is actual value, yˆ_t is predicted value, and T

is time steps. Use TensorFlow Lite for edge inference and fbprophet for forecasting.

The rapid convergence of the Internet of Things (IoT) and Artificial Intelligence

(AI) has transformed how machines interact with the world and with each other. This

integration enables smart devices to sense, learn, and respond to their environment in

real-time, making systems more efficient, autonomous, and intelligent. Python has

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 298 298

emerged as one of the most popular languages for developing AI-powered IoT

applications due to its simplicity, extensive library support, and active developer

community. This paper explores the technical aspects of creating an effective IoT

program with AI using Python, focusing on architecture design, hardware-software

integration, data processing, machine learning deployment, and security

considerations.

1. System Architecture and Design

The foundation of any successful IoT-AI application lies in its architecture. The

design should ensure seamless communication between devices, efficient data

collection, real-time processing, and intelligent decision-making.

An effective architecture typically includes three layers:

 Perception Layer (Edge Devices): Responsible for data collection using

sensors and actuators. Devices like Raspberry Pi or ESP32 often run lightweight

Python scripts for reading sensors and controlling output.

 Network Layer: Manages data transmission using protocols like MQTT,

HTTP, or CoAP. Python supports libraries such as paho-mqtt and requests for this

purpose.

 Application Layer (Cloud/Server): Performs data analytics, visualization,

and AI model deployment. Cloud platforms such as AWS, Google Cloud, and

Microsoft Azure offer Python APIs for integration.

Python’s ability to operate both on edge devices and cloud services makes it

ideal for full-stack IoT-AI development.

2. Hardware Integration with Python

For IoT applications, Python must interface with various hardware components.

Libraries like RPi.GPIO, Adafruit_BBIO, and pyserial allow seamless

communication with sensors and actuators.

Example:

To read temperature data from a DHT22 sensor using Raspberry Pi:

python

import Adafruit_DHT

sensor = Adafruit_DHT.DHT22

pin = 4

humidity, temperature = Adafruit_DHT.read_retry(sensor, pin)

print(f'Temp={temperature:0.1f}°C Humidity={humidity:0.1f}%')

Python abstracts low-level operations, allowing developers to focus on logic and

functionality instead of dealing with complicated drivers or firmware.

3. Data Collection and Processing

IoT devices often generate a massive amount of data. Managing, cleaning, and

processing this data efficiently is crucial.

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 299 299

 Real-time Data Collection: Use libraries like socket, pyserial, or MQTT

clients to gather streaming data.

 Data Preprocessing: Clean and transform raw data using pandas, numpy, or

scipy for use in AI models.

 Data Storage: Depending on the application size, data can be stored locally

(e.g., SQLite) or in the cloud (e.g., Firebase, AWS S3). Python offers support for

both.

Example of simple data transformation:

python

import pandas as pd

df = pd.read_csv("sensor_data.csv")

df['temperature'] = df['temperature'].apply(lambda x: x * 1.8 + 32) # Convert to

Fahrenheit

4. Implementing Machine Learning in IoT

AI algorithms enable IoT devices to make decisions based on data. Python’s ML

ecosystem is rich, including libraries such as:

 scikit-learn: For classical ML models

 TensorFlow Lite / PyTorch Mobile: For lightweight deep learning on edge

devices

 OpenCV: For computer vision tasks in smart cameras or drones

 Keras: For high-level deep learning models

The challenge lies in model selection, training, and deployment.

Training a Model:

python

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

X = df[['temp', 'humidity']]

y = df['device_status']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = RandomForestClassifier()

model.fit(X_train, y_train)

Creating an effective program for IoT devices with AI in Python requires an

understanding of both hardware and software components. From selecting appropriate

sensors and integrating them via GPIO, to designing real-time communication systems

and deploying intelligent machine learning models — each step demands attention to

detail and thoughtful planning. Python offers a powerful, versatile environment to

handle the full stack of IoT-AI development, supported by a vast ecosystem of libraries

https://scientific-jl.com/new

JOURNAL OF NEW CENTURY INNOVATIONS

https://scientific-jl.com/new Volume–79_Issue-2_June-2025 300 300

and community contributions. As IoT continues to expand into industries like

healthcare, agriculture, and smart cities, the role of Python as the backbone of

intelligent, connected devices will only grow stronger.

REFERENCES

1. Karim, M. A., & Sarwar, G. (2020). Artificial Intelligence and Machine Learning

for Internet of Things: A Review . Journal of Systems Architecture, 107, 101748.

2. Al-Turjman, F. (2021). AI-Enabled IoT Edge Computing Systems: Opportunities

and Challenges . IEEE Access, 9, 6345–6358.

3. VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for

Working with Data . O'Reilly Media.

4. Pedregosa, F., et al. (2011). Scikit-learn: Machine Learning in Python . Journal of

Machine Learning Research, 12, 2825–2830.

5. Raschka, S. (2015). Python Machine Learning . Packt Publishing.

6. Xu, L. D., He, W., & Li, S. (2014). Internet of Things in Industries: A Survey .

IEEE Transactions on Engineering Management, 61(4), 868–880.

7. Zhang, Y., et al. (2018). Edge AI: On-demand Accelerating Deep Neural Network

Inference via Edge Computing . IEEE Transactions on Mobile Computing, 21(5),

1467–1480.

8. Bhatt, R., Dwivedi, A., & Jha, N. (2020). IoT Based Smart Agriculture System

Using Machine Learning . IEEE IoT Journal, 7(5), 4256–4267.

9. IBM Research. (2021). AIoT (Artificial Intelligence + Internet of Things): Smarter

Decision-Making at the Edge . IBM White Paper.

10. Arduino LLC. (2022). Getting Started with Python for Embedded Systems and IoT

Devices . https://docs.arduino.cc

https://scientific-jl.com/new
https://docs.arduino.cc/

