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Abstract: Modern cosmology is based on the synthesis of general relativity (GR) 

and the Standard Model (SM) of particle physics, known as the ΛCDM model. Despite 

successes in describing the evolution of the Universe, fundamental questions remain: 

the nature of dark matter and dark energy, the mechanism of cosmic inflation, and the 

unification of quantum theory with gravity. This work analyzes key aspects of the 

ΛCDM model, its connection to particle physics, and prospects for addressing 

unresolved issues. 

1. Introduction. Particle cosmology is an interdisciplinary field that studies the 

evolution of the Universe through the lens of elementary particle physics. The 

foundation is the ΛCDM model, which includes [1-2]: 

▪ Dark matter (26.7% energy density), explaining anomalies in galactic rotation 

curves; 

▪ Dark energy (68.5%), responsible for accelerated expansion; 

▪ Baryonic matter (4.8%) and cosmic inflation—rapid expansion in the early 

stages. 

However, the model faces challenges: the absence of direct dark matter detections, 

uncertainty in the inflation mechanism, and the incompatibility of GR with quantum 

mechanics [3]. 

2. Methodology and Key Results [4-5]. 

2.1. From Newtonian Cosmology to ΛCDM. 

Classical Newtonian cosmology, relying on a static Universe model, failed to 

explain Hubble’s observations (1929) of expansion. The solution emerged from 

Friedmann’s equations derived from the Friedmann–Robertson–Walker (FRW) metric: 
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where 𝑎(𝑡) is the scale factor, 𝜌 is energy density, and 𝛬 is the cosmological 

constant. 

2.2. The Standard Model of Particles and Its Limitations. 

The SM describes three of the four fundamental interactions (excluding gravity) 

via the gauge group, 𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1). Despite the Higgs boson discovery 

(2012), the SM fails to explain: 

▪ Dark matter: Hypotheses include WIMPs (weakly interacting massive particles) 
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and actions: 

▪ Baryon asymmetry: CP-violation in the SM is insufficient to explain matter-

antimatter dominance. 

2.3. Inflation and Its Problems [6-7]. 

Inflation solves the horizon and flatness problems by postulating exponential 

expansion within the first 10−32 s. Remaining questions include: 

▪ Inflation nature: The scalar field driving inflation remains undetected; 

▪ Initial conditions: The trigger mechanism for inflation is unknown. 

2.4. Beyond the Standard Model. 

▪ Supersymmetry (SUSY): Predicts SM particle partners but lacks confirmation 

at the LHC; 

▪ Grand Unified Theories (GUTs): Unify interactions at 1016  GeV energies but 

predict unobserved proton decay. 

3. Unsolved Problems and Prospects [8-11]. 

▪ Dark matter: Ongoing searches in XENONnT and LZ experiments. 

▪ Quantum gravity: String theory and loop quantum gravity are leading 

candidates. 

▪ Inflation: Data from the JWST telescope and LISA mission may clarify early 

expansion [12]. 

4. Conclusion. The ΛCDM model successfully describes the Universe’s large-

scale structure but requires extensions to resolve fundamental issues. Integrating new 

theories (SUSY, GUTs) with next-generation observatories (JWST, LISA) will 

advance the quest for a complete quantum gravity theory. 
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