
 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
10

2181-3187

CLASSES AND OBJECTS. CONSTRUCTOR. CREATING OBJECT

ATTRIBUTES

Onarqulov Maqsadjon Karimberdiyevich

Associate Professor, Department of Applied

 Mathematics and Informatics, Fergana State University

E-mail: maxmaqsad@gmail.com

Odina Isroiljon qizi Ismoiljonova

3rd-year student of the Applied Mathematics program,

Group 22-08, Fergana State University

E-mail: ismoiljonovaodina88@gmail.com

Annotation: This article explores the core concepts of object-oriented

programming — including classes, objects, constructors, and the process of creating

object attributes. It emphasizes the practical importance of the object-oriented

approach in enabling proper software structuring and code reusability. Each concept is

explained with clear examples in Python, making the material accessible for beginner

programmers.

Keywords: Class, object, constructor, attribute, Python, object-oriented

programming, __init__ method, methods, encapsulation

Аннотация: В данной статье рассматриваются основные понятия объектно-

ориентированного программирования — классы, объекты, конструкторы и

процесс создания атрибутов объектов. Подчёркивается практическая значимость

объектно-ориентированного подхода для правильного проектирования

программной структуры и повторного использования кода. Все понятия

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
11

2181-3187

сопровождаются понятными примерами на языке Python, что делает материал

доступным для начинающих программистов.

Ключевые слова: Класс, объект, конструктор, атрибут, Python, объектно-

ориентированное программирование, метод __init__, методы, инкапсуляция

Annotatsiya: Ushbu maqolada obyektga yo‘naltirilgan dasturlashning asosiy

tushunchalari — klasslar, obyektlar, konstruktorlar va obyekt atributlarini hosil qilish

jarayonlari yoritiladi. Dasturchilar uchun dasturiy strukturalarni to‘g‘ri loyihalash va

kodni qayta ishlatishga imkon beruvchi obyektga yo‘naltirilgan yondashuvning amaliy

ahamiyati tushuntiriladi. Har bir tushuncha Python dasturlash tilida aniq misollar bilan

izohlangan bo‘lib, yangi o‘rganuvchilar uchun tushunarli tarzda bayon etilgan.

Kalit so‘zlar: Klass, obyekt, konstruktor, atribut, Python, obyektga yo‘naltirilgan

dasturlash, __init__ metodi, metodlar, encapsulation (inkapsulyatsiya)

Introduction

In modern software engineering, object-oriented programming (OOP) plays a

central role in solving complex computational problems by modeling real-world

systems through modular and reusable components. The fundamental constructs of

OOP — such as classes, objects, constructors, and attributes — allow developers to

encapsulate data and behavior into organized structures. This article aims to provide a

comprehensive overview of these concepts using examples in the Python programming

language, making it accessible for both beginners and those seeking to deepen their

understanding of OOP.

What is a Class?

In object-oriented programming (OOP), a class is an abstract, user-defined data

type that serves as a template or blueprint for creating individual objects. It

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
12

2181-3187

encapsulates data for the object and defines behaviors that the objects created from the

class can exhibit. A class typically combines two main components:

Attributes (also known as fields or properties): variables that hold the state or

characteristics of the object.

Methods: functions that define the behaviors or operations that can be performed

on the object.

Thus, a class represents both structure (what data is stored) and functionality

(what operations can be done on that data) in a unified framework.

Structure of a Class (in Python syntax)

A simple class in Python is declared using the class keyword:

Here:

Student is the name of the class.

__init__() is the constructor, a special method that is called when a new object is

instantiated.

self.name and self.age are attributes.

introduce() is a method.

This class defines the structure and behavior of a “Student” object.

Instantiation of Objects

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
13

2181-3187

A class does not hold data itself — instead, it defines how data should be

organized. An object (or instance) is a concrete occurrence of a class with actual data

assigned to its attributes.

Each time a class is instantiated, a new object is created in memory with its own

copy of the attributes defined in the class.

Scientific Benefits of Using Classes

Abstraction: Hides internal implementation and shows only relevant details.

Encapsulation: Bundles data and related methods into a single unit, restricting

direct access to some components.

Inheritance: Classes can be extended into subclasses, promoting code reuse.

Polymorphism: Classes can define methods that behave differently depending on

the object’s type or context.

These principles collectively enable systematic, modular, and scalable software

development — a cornerstone of modern engineering practices in computing.

What is an Object?

In object-oriented programming (OOP), an object is a concrete instance of a class

— a self-contained unit that bundles both data (attributes or fields) and behavior

(methods or functions). While a class defines the structure and capabilities, the object

is the actual entity that occupies memory and can perform actions.

Formally, an object is characterized by:

A unique identity

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
14

2181-3187

A defined state (via attribute values)

A defined behavior (via callable methods)

The object serves as a model of a real-world entity, encapsulating both static

properties and dynamic operations relevant to that entity.

Structure of an Object

In Python and many other OOP languages, objects are created (or instantiated)

from classes. Consider the following class:

Creating an object:

Here:

car1 is an object of class Car.

It has its own model and year values (state).

It can invoke the method start_engine() (behavior).

Each object has a separate memory address and can function independently of

other objects of the same class.

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
15

2181-3187

Scientific Characteristics of Objects

1. Identity

Every object has a unique identity during its lifetime. This identity distinguishes

it from all other objects.

2. State

The state is defined by the values stored in the object’s attributes. The state can

change during the object's lifetime via methods.

3. Behavior

The behavior of an object is defined by the methods associated with its class.

Methods operate on the object’s state and can interact with other objects.

4. The Constructor Method (__init__)

In Python and many object-oriented programming (OOP) languages, a constructor

is a special method used to initialize newly created objects. In Python, this method is

called __init__. It is invoked automatically when a class is instantiated, and it sets up

the object’s initial state by assigning values to its attributes.

Theoretical Foundations

From a theoretical standpoint, the constructor method supports the principle of

encapsulation and plays a vital role in ensuring object integrity and state consistency

upon creation. It is essential for:

Initialization of instance-specific data.

Establishing invariants, i.e., conditions that must hold true throughout the object's

lifetime.

Providing overloaded behavior, allowing parameterized construction of diverse

object configurations.

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
16

2181-3187

In formal terms, the constructor can be seen as part of the object creation protocol,

separating memory allocation from initialization logic.

Syntax and Structure (Python)

The constructor in Python has the following structure:

Object instantiation and initialization:

Here:

The call to Student("Alice", 20) creates an object.

The __init__ method is automatically invoked with self, "Alice", and 20 as

arguments.

The instance variables self.name and self.age are initialized.

Functionality of __init__

The __init__ method serves as:

A parameterized constructor, accepting arguments during object creation.

A mechanism for assigning default values or conducting pre-processing before an

object is used.

A gateway for dependency injection, allowing external resources or

configurations to be passed into the object.

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
17

2181-3187

Example with default values:

Scientific and Practical Significance

1. State Integrity

The constructor guarantees that all attributes of an object are properly initialized

before the object is accessed, ensuring consistency in object behavior.

2. Encapsulation and Modularity

By controlling how an object is initialized, the constructor enforces encapsulation,

and allows abstraction by hiding internal initialization complexity.

3. Overload Flexibility

Although Python does not natively support constructor overloading, default

parameters and conditional logic within __init__ can simulate multiple constructor

behaviors, allowing for flexible instantiation patterns.

4. Integration with Class Design

A well-designed constructor complements the Single Responsibility Principle

from software engineering: it should only initialize the object, avoiding complex

business logic.

5. Object Attributes

Object attributes are the data members or properties that belong to an object and

represent its state or characteristics. Attributes store information that is specific to each

individual instance of a class and help define the unique identity and current condition

of that object.

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
18

2181-3187

In OOP, attributes are typically represented as variables bound to the object. They

distinguish one object from another, even if the objects are instances of the same class.

Theoretical Background

Attributes are fundamental to the principle of encapsulation in OOP, as they:

Hold the object's internal state.

Are usually accessed and modified through methods (getters and setters) to

maintain control over how data changes.

Support data hiding by making attributes private or protected, preventing

unauthorized external access.

From an abstract viewpoint, attributes define the state space in which an object

operates, and the changes in attribute values reflect the dynamics of the object's

behavior.

Types of Attributes

InstanceAttributes

These are attributes that belong to a specific object instance. Each object has its own

copy, and changes to one object’s attributes do not affect others.

Example in Python:

ClassAttributes

These attributes are shared among all instances of a class. They represent properties

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
19

2181-3187

common to all objects.

PrivateAttributes

By convention, attributes prefixed with underscores (_ or __) are treated as private or

protected, restricting direct external access

Attribute Access and Modification

Attributes are generally accessed and modified through methods (also called

accessors and mutators):

Getters retrieve attribute values.

Setters update attribute values, often with validation logic.

Example:

Scientific Importance of Attributes

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
20

2181-3187

Encapsulation and Abstraction: Attributes encapsulate data, enabling abstraction

by exposing only necessary information through controlled interfaces.

State Management: Attributes reflect the dynamic state of an object, crucial for

behavior and decision-making processes.

Data Integrity: Proper management (e.g., through setters) ensures attribute values

remain valid and consistent.

6. Encapsulation (inkapsulyatsiya)

Encapsulation is one of the fundamental principles of object-oriented

programming (OOP). It refers to the process of bundling data (attributes) and methods

(functions) that operate on that data into a single unit, called an object. Encapsulation

also restricts direct access to some of an object's components, which is a means of data

hiding and helps protect the integrity of the object's internal state.

Theoretical Background

Encapsulation provides a mechanism for data hiding and controlled access to the

internal state of an object. It ensures that:

The internal representation (state) of an object is shielded from direct modification

by external code.

Access to the object's data is only possible through well-defined interfaces

(methods).

This reduces complexity, increases security, and preserves the consistency of the

object's state by preventing unauthorized or unintended interference.

Mechanisms of Encapsulation

Programming languages implement encapsulation through:

Access Modifiers:

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
21

2181-3187

public — accessible from anywhere.

private — accessible only within the class itself.

protected — accessible within the class and its subclasses.

Getter and Setter Methods

Special methods that control access to private attributes, enabling validation,

logging, or other processing during data retrieval or modification.

Scientific and Practical Importance

Data Integrity and Security: Encapsulation safeguards an object's data from

unauthorized or incorrect modification.

Abstraction: It hides complex internal details, exposing only what is necessary for

interaction.

Maintainability and Scalability: Encapsulation promotes modularity, making code

easier to maintain and extend without unintended side effects.

Example in Python

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
22

2181-3187

Bu misolda __balance atributi private hisoblanadi va to‘g‘ridan-to‘g‘ri tashqi

koddan o‘zgartirilishi mumkin emas. Faqat maxsus metodlar orqali unga kirish va

boshqarish mumkin.

Conclusion

The fundamental concepts of object-oriented programming—classes, objects,

constructors, object attributes, and encapsulation—play a crucial role in organizing

efficient and maintainable software systems. Classes serve as blueprints for creating

objects, which are individual instances possessing unique states. Constructors ensure

that objects are initialized properly and consistently, thereby maintaining data integrity

within the program. Object attributes define the specific characteristics of each object,

enabling the representation of diverse real-world entities. Encapsulation protects data

by bundling attributes and methods together and restricting direct external access,

which enhances security, modularity, and maintainability.

Together, these principles facilitate the development of software that is reusable,

scalable, and adaptable to complex problem domains. Mastering the concepts of classes

and objects, along with their supporting mechanisms, is essential for modern

programmers aiming to build robust, flexible, and reliable applications.

References

Booch, Grady. Object-Oriented Analysis and Design with Applications. 3rd Edition.

Addison-Wesley, 2007.

— Comprehensive coverage of OOP concepts, including classes, objects, and

encapsulation.

Stroustrup, Bjarne. The C++ Programming Language. 4th Edition. Addison-Wesley,

2013.

— Detailed explanation of OOP principles and constructors in C++.

 ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

 https://scientific-jl.org/obr Выпуск журнала №-69

Часть–5_ Мая –2025
23

2181-3187

Lippman, Stanley B., Lajoie, Josée, Moo, Barbara E. C++ Primer. 5th Edition.

Addison-Wesley, 2012.

— Fundamentals of classes and attributes in object-oriented programming.

Schildt, Herbert. Java: The Complete Reference. 11th Edition. McGraw-Hill, 2018.

— Practical guide on encapsulation and constructors in Java.

Gamma, Erich, Helm, Richard, Johnson, Ralph, Vlissides, John. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

— Classic resource for design patterns and advanced OOP concepts.

Sebesta, Robert W. Concepts of Programming Languages. 11th Edition. Pearson, 2015.

— Theoretical background on programming languages, including OOP and

encapsulation.

Python Software Foundation. Python Language Reference, version 3.9. Available at:

https://docs.python.org/3/reference/

— Official documentation on constructors and attributes in Python.

https://docs.python.org/3/reference/

