

ПРИМЕНЕНИЕ НЕЧЕТКО-МНОЖЕСТВЕННОГО ПОДХОДА В ПРОЦЕССЕ ОЦЕНКИ ПЕРСПЕКТИВНОСТИ МЕСТОРОЖДЕНИЙ ПОДЗЕМНЫХ ВОД

А.Айтанов -PhD, старший преподаватель Государственного технического университета Нукус

А.Базарбаев-преподаватель Государственного технического университета Нукус

Н.Шаниязова - преподаватель Государственного технического университета Нукус

Аннотация: В статье рассматривается применение нечеткомножественного подхода ДЛЯ оценки перспективности месторождений подземных вод (ПВ) в условиях Средней Азии. В условиях техногенных нагрузок и ухудшения экологической обстановки оценка и рациональное использование водоносных пластов (ВПВ) приобретают особую актуальность. Предложен нечетко-логический метод, основанный на модели Мамдани, для анализа параметров ВПВ с учетом лингвистической неопределенности исходной информации. Используется программный пакет Fuzzy Logic Toolbox в среде Matlab для построения нечетких моделей, которые позволяют экспертам качественно оценить перспективность месторождений гидрогеологам помощью вербальных правил. Результаты моделирования демонстрируют среднее расхождение с фактическими данными в 5,27%, что подтверждает адекватность подхода. Выводы подчеркивают перспективность интеграции полученных результатов В автоматизированные системы управления водозаборами.

Ключевые слова: нечетко-множественный подход, месторождения подземных вод, водоносные пласты, искусственное восполнение запасов, автоматизация водоснабжения.

В условиях интенсификации техногенных воздействий и ухудшения экологической обстановки в ряде регионах Средней Азии важным источником хозяйственно-питьевого водоснабжения населения являются искусственно создаваемые запасы ПВ. В этой связи актуальными является вопросы обоснования проектов формирования и эксплуатации ВПВ, основанных на всестороннем анализе и учете особенностей строения водоносных пластов, а также различных условий формирования и эксплуатации. В процессе решения задач связанных с созданием искусственных запасов ПВ, предназначенных для последующего использования в качестве хозяйственно-питьевого водоснабжения населения приходится решать следующие задачи [1,2,3]:

- оценка перспективности водоносных пластов для внедрения технологии искусственного восполнения запасов подземных вод по мощности, фильтрационным свойствам, ширине и длине;
- диагностика состояний ПВ (ВПВ) для комплексной оценки перспективности, опасности истощения запасов и загрязнения ПВ;
- совершенствование методики численного моделирования условий формирования и эксплуатации ВПВ в условиях, когда месторождения ПВ рассматриваются как детерминированная система при нечетких исходных данных.

Рассмотрим вопросы применения нечетко-логического метода для решения перечисленных задач.

Выбор и обоснование технологических схем ВПВ осуществляется на основе анализа литологии, мощности, ширины и длины водоносных пластов, начальных и граничных гидрогеологических, гидрологических и гидрохимических условий [1,2,3,4,5,6,7].

При этом процесс обоснования ВПВ состоит из следующих взаимосвязанных этапов:

- оценка эксплуатационных возможностей выделенных участков;
- выбор технологических схем формирования и эксплуатации водозабора.

В гидрогеологической практике для решения задачи оценки эксплуатационных возможностей применяются графические номограммы, предназначенные для определения дебита водозаборов в зависимости от изменений ширины, мощности, длины водоносных пластов и КПД системы искусственного формирования [2].

Трудности с определением таких параметров водозаборов, как ширина, мощность, производительность, приводит к тому, что интерпретация этих величин как нечетких больше соответствует реальной гидрогеологической обстановке.

С другой стороны, как показывает практика, эксперты—гидрогеологи с достаточно высокой уверенностью способны охарактеризовать перспективность месторождений ПВ при нечеткой оценке влияющих факторов лингвистическими конструкциями типа

«Если МОЩНОСТЬ ВОДОНОСНОГО ГОРИЗОНТА **БОЛЬШАЯ** и КОЭФФИЦИЕНТ ФИЛЬТРАЦИИ **ВЫСОКИЙ** и КОЭФФИЦИЕНТ ВОДООТДАЧИ ПОРОД **ВЫСОКИЙ**, то ПЕРСПЕКТИВНОСТЬ МПВ **ВЫСОКАЯ**».

Построение нечетких моделей позволит непосредственно использовать в процессе ПР по выбору параметров МПВ информацию качественного характера, т.е. информацию вербального характера, выражающую опыт, знания, интуиции гидрогеологов в лингвистической форме.

Для решения поставленной задачи в качестве средства моделирования предпочтение отдано модели типа Мамдани [8,9].

ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

Для проектирования системы нечеткого логического вывода использовались возможности среды Matlab 6.5 (release/3), а именно пакет «Fuzzy Logic Toolbox» [7].

Пусть $X = \{x_1, x_2\}$ - входной вектор, где x_1, x_2 - параметры водозабора—ЛП:

 x_1 — «мощность пласта» с базовым терм-множеством переменных $T_1 = \{ML, NS, SR, BL, OBL\}$, определенная на универсуме метров [0,40];

 x_2 - «ширина пласта» с базовым терм-множеством переменных $T_2 = \{ML, SR, VS, BL, OBL\}$, определенная на универсуме метров [0,1000];

Пусть Y — выходной вектор ЛП, Y= «Производительность водозабора», с базовым терм-множеством переменных $T_y = \{ML, NS, SR, BL, OBL\}$, определенная на универсуме м³/сут [0,30000].

Составляющие терм-множества T_1, T_2 и T_y означают:

ML — «малая», NS — «ниже среднего», SR — «средний», BL — «большой», OBL — «очень большой», HM — «немалый».

- ullet В основном редакторе определим две входные переменные (X1 X2) и одну выходную (У).
- ullet В редакторе $\Phi\Pi$ «Membership Function Editor» зададим $\Phi\Pi$ нечетких переменных $X_1\,X_2$ и Y.
- •В редакторе базы знаний Rule Editor формулируем правила и определяем соответствующие веса взаимосвязи и взаимозависимости между ЛП X_1 X_2 и Y (табл.1), на основе которых строится нечеткая логическая модель типа Мамдани.

Таблица 1

Нечеткая база правил оценки параметров МПВ


```
    If (moshnost is ML) and (shirina is ML) then (Proizvoditelnost-vodozabora is ML) (1)

If (moshnost is ML) and (shiring is CR) then (Proizvoditelnost-vodozabora is ML) (1)

    If (moshnost is ML) and (shirina is VS) then (Proizvoditelnost-vodozabora is ML) (1)

    If (moshnost is ML) and (shiring is BL) then (Proizvoditelnost-vodozabora is CR) (0.74).

If (moshnost is ML) and (shirina is OBL) then (Proizvoditelnost-vodozabora is HM) (1)
If (moshnost is NS) and (shirina is ML) then (Proizvoditelnost-vodozabora is ML) (1)

    If (moshnost is NS) and (shirina is CR) then (Proizvoditelnost-vodozabora is ML) (1)

If (moshnost is NS) and (shirina is VS) then (Proizvoditelnost-vodozabora is ML) (1)

    If (moshnost is NS) and (shirina is BL) then (Proizvoditelnost-vodozabora is CR) (0.85)

    If (moshnost is NS) and (shirina is OBL) then (Proizvoditelnost-vodozabora is HM) (0.95)

    If (moshnost is SR) and (shirina is ML) then (Proizvoditelnost-vodozabora is ML) (1)

    If (moshnost is SR) and (shirina is CR) then (Proizvoditelnost-vodozabora is ML) (1)

13. If (moshnost is SR) and (shirina is VS) then (Proizvoditelnost-vodozabora is ML) (0.8)

    If (moshnost is SR) and (shirina is BL) then (Proizvoditelnost-vodozabora is CR) (1)

    If (moshnost is SR) and (shirina is OBL) then (Proizvoditelnost-vodozabora is HM) (0.65)

16. If (moshnost is BL) and (shirina is ML) then (Proizvoditelnost-vodozabora is CR) (0.54)
17. If (moshnost is BL) and (shiring is CR) then (Proizvoditelnost-vodozabora is CR) (0.66)
18. If (moshnost is BL) and (shirina is VS) then (Proizvoditelnost-vodozabora is CR) (1)
```

```
19. If (moshnost is BL) and (shirina is BL) then (Proizvoditelnost-vodozabora is CR) (0.72) 20. If (moshnost is BL) and (shirina is OBL) then (Proizvoditelnost-vodozabora is BL) (1) 21. If (moshnost is OBL) and (shirina is ML) then (Proizvoditelnost-vodozabora is HM) (1) 22. If (moshnost is OBL) and (shirina is CR) then (Proizvoditelnost-vodozabora is HM) (1) 23. If (moshnost is OBL) and (shirina is VS) then (Proizvoditelnost-vodozabora is HM) (1) 24. If (moshnost is OBL) and (shirina is BL) then (Proizvoditelnost-vodozabora is BL) (0.79) 25. If (moshnost is OBL) and (shirina is OBL) then (Proizvoditelnost-vodozabora is OB) (1)
```

Результаты нечеткого моделирования в графическом виде представлены на рис.1.

Поверхность нечеткой fuzzy-модели производительности водозабора при μ =0,175 и КПД системы ИВ-0,75

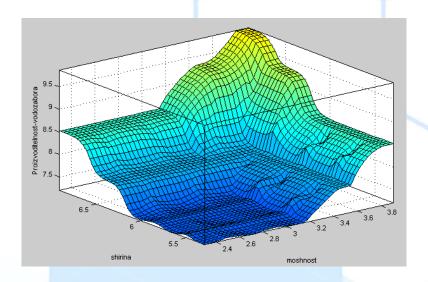


Рис.1

Таблица 2

Сопоставление результатов нечеткого моделирования производительности ВПВ с фактическими данными

Moshn	Shir	Q	Ln(Moshn)	Ln(Shir)	Ln(Q)	$\ln(\widetilde{Q})$	$\left \ln(Q) - \ln(\widetilde{Q})\right $	%
10	200	990,57	2,3	5,3	6,9	7,3	0,4	5%
10	300	1485,85	2,3	5,7	7,3	7,3	0,1	1%
10	400	1981,13	2,3	5,99	7,59	7,8	0,2	3%
10	500	2476,42	2,3	6,21	7,81	7,9	0,1	1%
10	600	2971,7	2,3	6,4	8	8,1	0,1	1%
10	700	3466,98	2,3	6,55	8,15	8,5	0,4	4%
10	800	3962,26	2,3	6,68	8,28	8,6	0,3	4%
10	900	4457,55	2,3	6,8	8,4	8,6	0,2	2%
10	1000	4952,83	2,3	6,91	8,51	8,6	0,1	1%
20	200	1981,13	3	5,3	7,59	7,2	0,4	5%
20	300	2971,7	3	5,7	8	7,2	0,8	10%
20	400	3962,26	3	5,99	8,28	7,3	1	12%
20	500	4952,83	3	6,21	8,51	7,7	0,8	10%
20	600	5943,4	3	6,4	8,69	7,8	0,9	10%
20	700	6933,96	3	6,55	8,84	7,9	0,9	10%
20	800	7924,53	3	6,68	8,98	8,4	0,6	6%
20	900	8915,09	3	6,8	9,1	8,5	0,6	6%
20	1000	9905,66	3	6,91	9,2	8,5	0,7	7%
30	200	2971,7	3,4	5,3	8	7,7	0,3	3%



ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ

30	300	4457,55	3,4	5,7	8,4	7,7	0,7	8%
30	700	10400,9	3,4	6,55	9,25	8,3	0,9	10%
30	800	11886,8	3,4	6,68	9,38	9,1	0,3	3%
30	900	13372,6	3,4	6,8	9,5	9,2	0,3	3%
30	1000	14858,5	3,4	6,91	9,61	9,2	0,4	4%
40	200	3962,26	3,69	5,3	8,28	8,4	0,1	1%
40	300	5943,4	3,69	5,7	8,69	8,3	0,4	4%
40	400	7924,53	3,69	5,99	8,98	8,3	0,7	8%
40	500	9905,66	3,69	6,21	9,2	8,6	0,6	7%
40	600	11886,8	3,69	6,4	9,38	8,8	0,6	6%
40	700	13867,9	3,69	6,55	9,54	8,8	0,7	7%
40	800	15849,1	3,69	6,68	9,67	9,3	0,3	3%
40	900	17830,2	3,69	6,8	9,79	9,5	0,3	3%
40	1000	19811,3	3,69	6,91	9,89	9,6	0,3	3%
50	200	4952,83	3,91	5,3	8,51	8,5	0	0%
50	300	7429,25	3,91	5,7	8,91	8,5	0,4	4%
50	400	9905,66	3,91	5,99	9,2	8,5	0,7	7%
50	500	12382,1	3,91	6,21	9,42	8,9	0,5	5%
50	600	14858,5	3,91	6,4	9,61	9,3	0,3	3%
50	700	17334,9	3,91	6,55	9,76	9,4	0,4	4%
50	800	19811,3	3,91	6,68	9,89	9,8	0,1	1%
50	900	22287,7	3,91	6,8	10,01	9,9	0,2	2%
50	1000	24764,2	3,91	6,91	10,12	9,9	0,3	2%
	<u>I</u>	-						

среднее значение расхождения

5,27%

Результаты нечеткого моделирования процесса выбора параметров МПВ сравнены с результатами количественной оценки, проделанной на основе методики, предложенной в [2]. Как видно из табл. 2, разность результатов моделирования состовляет среднем 5,27%.

Нечеткая модель определения параметров водозаборов построенная на базе Fuzzy Logic Toolbox, позволит провести ВЭ с целью изучения перспективности водозаборов. Для этого в модуле Rule Viewer предусматривается реализация логического вывода для различных значений входных параметров.

Возможность получения числовых значений параметров ВПВ в интерактивном режиме в условиях нечеткой исходной информации открывает возможность интеграции полученных результатов в существующие математические модели технологических схем МПВ для создания систем автоматизированного управления с использованием современных информационных технологий.

Список литературы:

- Акрамов А.А. Регулирование запасов пресных вод в подземных водохранилищах Средней Азии. Ташкент: ФАН АН РУз. 1991. 216 с.
- Акрамов А.А. Технология искусственного восполнения подземных вод на водозаборах Приаралья. Ташкент: ГГП «Узбекгидрогеология», 1977.–165 с.
- Гавич И.К. Методы охраны подземных вод от загрязнения и истощения. М.: Недра, 1985. 320 с. 46,
- К вопросу математического моделирования процессов взаимосвязи пеоверхностных и и подземных вод / Джуманов Ж.Х., Казбехов Ж.Х.,

Чертков Ю.Т., Базаров Д. // Вестник аграрной науки Узбекистана - Ташкент,2002. - № 3.- С. 47-50. 70,

- •Усманов Р.Н. К вопросу обоснования проектов подземных водозаборов с исскуственным восполнением запасов методом математического моделирования // Инфокоммуникационные и вычислительные технологии в науке, техники и образовании: Материалы Межд. науч. конф. 28-30.сент. Ташкент, 2004. С.265-268 . 142,
- •Усманов Р.Н. К вопросу реализации технологических схем исскуственного восполнения подземных вод на основе матема-тических моделей геофильтрации и массопереноса // Там же −С. 268-271 .143
- •Усманов Р. Н. Нечеткое моделирование технологических процессов водозабора в системах искусственного восполнения подземных вод// Химическая технология. Контроль и управление. Ташкент, 2007. № 1 .-С. 63-69. 145,
- •Muzimoto M. Note on the arifmetic nule by Zadeh for fuzzy conditional interence: Cybern. Syst., Vob.12, 1981. 247-306 p. 179,
- •Saaty T.L. Exploring the interface between hierarchies, multiple objectives and fuzzy sets. Fuzzy Sets and Systems, 1978, v.1. P. 57-68. 180,

