

RESULTS OF PRACTICAL EXPERIENCE OF HEATING A GREENHOUSE VIA SOLAR WATER HEATING COLLECTORS WITH VACUUM TUBES (IN KARSHI CITY CONDITIONS)

Toshboev Abdimalik

https://orcid.org/0009-0005-2139-2861

Assistant, Karshi State Technical University
Sultanov Samandar

https://orcid.org/0009-0009-6593-6671

PhD student at Karshi State Technical University.

Sohibov Medxun

https://orcid.org/0009-0007-6557-9948

Master's student at Karshi State Technical University.

Annotation

This article calculates the heat load required to maintain the internal temperature of the greenhouse and analyzes the possibilities of heating a greenhouse using solar water heating collectors with vacuum tubes under conditions of external temperature fluctuations. The article uses as a basis the model of a greenhouse with an area of 50 m², covered with glass.

Keywords: greenhouse heating, solar energy, evacuated tube collector, solar water heater, alternative energy sources, practical experience results, thermal efficiency, environmentally friendly heating method, solar collector system, energy-saving technology.

In Uzbekistan, year-round cultivation of vegetables and other products in greenhouses uses artificial heat sources. Compared to traditional fuels, the use of solar energy can reap environmental and economic benefits, especially through the use of vacuum tube solar collectors.

In winter, there is a need for an efficient source of heat to maintain a greenhouse microclimate. Solar energy is important as a renewable and cost-effective source. In order to determine the efficiency of vacuum tube solar water heating collectors under real conditions, an experiment was carried out in Karshi.

Experience Conditions

Date: February 22, 2025- Location: Karshi city, Kashkadarya region- System: vacuum collector with 20 pipes, capacity 200 liters- Time: from 09:00 to 15:30-Outside temperature: 6 °C \rightarrow 23 °C- Water temperature: 20 °C \rightarrow 51 °C- Solar radiation: 342 \rightarrow 970 W/m² (mixed cloudy and sunny conditions)

Table of experiments (main observations)

Time	External	Water	Solar		
	temperature (°C)	temperature (°C)	radiation (W/m²)		
9:00	6	20	342		
9:30	7	22	480		
10:00	8	25	627		
10:30	9	28	729		
11:00	10	30	645		
11:30	13	33	860		
12:00	17	35	820		
12:30	18	38	650		
13:00	18	39	400		
13:30	18	42	650		
14:00	20	44	845		
14:30	23	49	970		
15:00	22	50	560		
15:30	21	51	710		

Calculation of energy harvest

Thermal energy collected through water (during the whole experiment):

Formula:Q =
$$m \cdot c \cdot \Delta Tm = 200 \text{ kgc} = 4186 \text{ J/kg} \cdot {}^{\circ}\text{C}\Delta T = 51 - 20 = 31 \, {}^{\circ}\text{CQ} = 200 \times 4186 \times 31 = 25,951,200 \text{ J} \approx 7210 \text{ Wh} = 7.21 \text{ kWh}$$

Result: During the experiment, 7.21 kWh thermal energy was collected.

Correlation with expected energy

Average solar radiation: 745 W/m²

Collector area: 2 m²Working time: 6.5 hours

 $Q = 2 \times 745 \times 6.5 \approx 9.67 \text{ kWh}$

Actual: 7.21 kWhTheoretical maximum: 9.67 kWh

Efficiency: $(7.21 / 9.67) \times 100 \approx 74.6\%$

Figure 1 Solar Water Heating Collectors with Vacuum Tube

Calculation of greenhouse heat load

Heat loss of a greenhouse is calculated by the following formula:

$Q=U\cdot A\cdot \Delta T$

here:

- Q is heat loss (W),
- U is the total coefficient of thermal conductivity (W/m²· K),
- A— heat-conducting level of the greenhouse (m²),
- $\bullet \Delta T$ is the temperature difference (K) between the inside and outside.

Information:

- Greenhouse area: 50 m²
- Average height: 2.5 m \rightarrow Volume $\approx 125 \text{ m}^3$
- Surface area (wall + roof): approx. 130 m²
- •Glass (window) surface: $100\% \rightarrow U=5.7U=5.7U=5.7$ W/cu· K (U-value of a normal window)
 - Internal temperature: +20 °C
 - External temperature: from +5 °C to -5 °C

Calculations:

External	ΔΊ							
temperature	(K)	Q(W)						
(°C)	(11)							
+5	1.5	5.7×130×15=11	1155.7 ×	130	×	15	=	
	13	111155.7×130×15=11	1115 W					
0	20	5.7×130×20=148	8205.7 ×	130	×	20	=	
	20	148205.7×130×20=14	4820 W					
-5	25	5.7×130×25=185	5255.7 ×	130	×	25	=	
	23	185255.7×130×25=18	3525 W					
0	152025	$111155.7 \times 130 \times 15 = 12$ $5.7 \times 130 \times 20 = 148$ $148205.7 \times 130 \times 20 = 14$ $5.7 \times 130 \times 25 = 183$	1115 W 8205.7 × 4820 W 5255.7 ×	130	×	20		

Thus, when the outside temperature drops to -5 °C, the greenhouse heat load reaches 18.5 kW.

FIGURE 2: Solar Greenhouse Heat

Conclusion

This experiment from Karshi showed that 200 liters of water was heated to 31°C in 6.5h and 7.21kWh of energy was collected. Even in partially cloudy weather, the collector was able to generate enough heat. These results provide a practical justification for the use of such collectors for heating greenhouses

It is evident from calculations that a greenhouse with an area of 50 m² can be heated using solar water heater collectors with vacuum tubes. The main advantage of the system is environmental friendliness and low operation costs. The initial investment, while high, has long-term cost-effectiveness.

References.

- 1. Uzoqov Gʻ.N., Davlonov X.A. Gelioissiqxonalarning energiya tejamkor isitish tizimlari. Monografiya, T.:"Voris", 2019 144 bet.
- 2. Узаков Г.Н., Давлонов Х.А., Узакова Ю.Г. Устройство для отопления и топливо снабжения теплиц. Патент Р. Уз., 2019 г.
- 3. QAYTA TIKLANADIGAN ENERGIYA MANBALARI ASOSIDA MOBIL UYLARNING ENERGIYA TA'MINOT TIZIMLARINI PARAMETRLARINI ASSOSLASH

SS Yamgirovich, DX Allamurotovich, SM Islom O'g'li... - INTELLECTUAL EDUCATION TECHNOLOGICAL ..., 2024

4. <u>DEVELOPMENT AND INNOVATION</u>

Sohibov M I, AE Abdixomid o'g'li - academia.edu

5. Toshboyev Abdimalik, Arziyev Bakhrom, & Sokhibov Medkhun. (2023). CENTRAL ASIA WITH DIVERSE TOPOGRAPHY AND HYDROLOGIC CONDITIONS, HYDROPOWER POTENTIAL. *European International Journal of Multidisciplinary Research and Management Studies*, *3*(11), 151–156. Retrieved from https://inlibrary.uz/index.php/eijmrms/article/view/26869

