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Abstract. In this paper by using Hirota direct method, the one-soliton solution of
perturbed modified Korteweg-de Vries equation mKdV are studied. We have shown
the evolution of the one-soliton solutions.
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1. Introduction

Meanwhile, a variety of powerful methods for seeking the explicit and exact
solutions of nonlinear evolution equations have been proposed and developed. Among
them are the inverse scattering method [1], Hirota’s direct method, Backlund
transformation method, Darboux transformation method, tanh-sech method [2-4],
extended tanh method [5-7], sine-cosine method [8-10], homogeneous balance
method [11, 12], Jacobi elliptic function method [13-16], F-expansion method [17—

19], exp-function method [20, 21], trigonometric function series method [22], (G ¥/ G

)-expansion method [23, 24] and so on.

Among them, the Hirota method can solve not only integrable equations, but also
non-integrable equations, the Hirota bilinear method is an important and direct method
[25]. The advantage of the Hirota bilinear method is an algebraic rather than analytical
method. And it has been successfully applied to solve a large number of soliton
equations, for examples, KdV equation, mKdV equation, Sine-Gordon equation,
nonlinear Schrodinger equation, etc. Some analytic dark two-soliton solutions of
highorder nonlinear Schrodinger equation are obtained via the Hirota bilinear method

in the inhomogeneous optical fiber, and some new phenomena are presented for the
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first time in [26]. Optical soliton propagation is investigated theoretically in the
dispersion-decreasing fibers, and three solitons can split into four solitons or merge
into two solitons in [27]. The dynamics of spatiotemporal solitons of a partially
nonlocal Schrodinger equation are constructed via Darboux transformation method and
Hirota method in [28]. Numerical solutions of the nonlinear Schrodinger equation
studied in [29-31].

The main content of this work is to solve the complex mKdV equation using the
improved Hirota bilinear method. We give the one-soliton solution.

2. Hirota bilinear method for a complex perturbed mKdV equation

Perturbed NLSE with Kerr law nonlinearity [28] with following form:

ig, +q,+alalg+ilga, + 9,19l q +galal)]=0.

When a = 0,9, = g, = 0,9, = 1 we have complex perturbed MKdV equation
A + 0, + 610 a, +3a(af), =0, (1)

where q=q(xt) is a complex-valued function of real variables x and t.

We take an improved Hirota bilinear method to Eqg. (1) simultaneously by

introducing the dependent variable transformations, namely

q(x,t>=% , @

where the g=g(x,t) is complex-valued function, the f=f(x,t) is real-valued

function.

We substitute the transformation Eq. (2) into Eq. (1), and have a novel system

2 2
(2 AN o
f) Uf) |flUf) f\f]),
which is equivalent to
1 3 1 2 2 2
(D, +D))gf +—((oJg ~3D} ff)D,gf ~397D,gf | =0 (4)

Hence the Hirota bilinear forms of the integrable complex MKdV equation are
given rise to as follows
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(D, +D))g(xt) f(x,1) =0, (5)
(9]g[ —3D? ff)D,gf —3¢°D,qf =0. (6)

In the above equations, the Dt and Dx are the standard Hirota’s bilinear operators

and they are defined as

o oY(o oY
DD "g(x,t)- f(x,t)=| —— —_——— X, O fF (Xt .. 7
L Drg(xt)- f(xt) (Gx 8x’j (at at’j g(x,t) fF (X)L (7)

Some soliton solutions can be obtained by solving the above set of bilinear Egs.
(5) and (6). In this section, we expand the unknown functions g(x,t), f(xt)interms of
a small parameter ¢

g=¢0,+&°0,+..., 9¥=¢&0, +&°0; +... (8)

f=1+&°f,+&*f, +..., (9)

where the g,, g, are functions of x and t, the g,, g, are functions of x and t.
Substituting the above expansions into Egs. (5) and (6), and equating the coefficients
of same powers of € to zero, we obtain a set of equations for the unknown functions
g(x,t), g*(x,t) and f(x,t). Some solutions of the soliton equations can be obtained by
selecting the appropriate functions g,, 9,, 9s, J;, etc.

3. One soliton solution of Eq. (1)

In order to construct one-soliton solution of complex MKdV equation (1), we take
the following expansions of the functions g, g*, f and f *:

g(xt)=eg,, g (xt)=¢g;, (10)

f(x,t) =1+ &2f,, (11)

Substituting the above expansions of Eq. (11) into the bilinear Egs. (5), (6) and

(7), we take the procedure of an improved Hirota bilinear method for a complex MKdV

equation. We can derive a series of linear partial differential equations of the unknown
functions g,, g, and f, as follows

(Dt+D>?)91=O’ (12)

—
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in which, the following forms of g (x,t), g,(x,t) and f,(x,t) are consistent with
Eq. (12), which are given rise to as follows

g, (x,t) =€, g;(xt)=¢", (13)

1
(kl il k1)2

f,(x,t) = AT et = (14)

Where 7 =kx—wt+& 7, =—kix—wit+&, and k,, ki, A are arbitrary complex
constants. When we take Egs. (13) and (14) into Eq. (12), then obtain k}=w, and the

function f, as follows

ks, (kK -6 +KD)t
. _ e/l :e -
k) R -

Substituting the above expressions into the relevant expressions given in Egs.

(9), (10) and rewriting them suitably, we derive the one - soliton solution of complex
MKdV equation (1)

2ie 1
Q(X,t)zm yefh=—— . (16)
+e (k,—ks)
According to the bilinear form of parity transformed complex conjugate equation,
we can obtain the parity transformed complex conjugate field in the form
%i kx—at

* e
q (xt) ZW : (17)
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