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Annotation. The paper revisits the k-Nearest Neighbors (k-NN) algorithm by 

combining mathematical exposition with empirical testing on three benchmark 

datasets—Iris, Wine and Breast-Cancer. All features were z-score standardized; 

classification accuracy was recorded for k ranging from 1 to 15. Two visual tools—an 

accuracy-versus-k curve and a 2-D PCA scatter plot—highlight how hyper-parameter 

choice affects performance and reveal the inherent class structure. Findings confirm 

that, with proper scaling and a moderate neighborhood size (k ≈ 5–11), k-NN attains 

stable accuracies of roughly 94–96 %. 
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Introduction. The k-Nearest Neighbors (k-NN) algorithm belongs to the family 

of instance-based (lazy-learning) methods that require virtually no explicit training 

stage. Originally proposed by Cover and Hart [1], k-NN has gained wide popularity 

over the past decade—particularly in engineering and experimental research—because 

of its simplicity and intuitive appeal for both classification and regression across 

datasets of varying size and dimensionality. One of its chief strengths is that model 

construction (fitting) is almost trivial, so there is little need for elaborate hyper-

parameter tuning. Consequently, k-NN is often the first “ready-to-use” baseline for 

rapid prototyping on large, heterogeneous data collections [2]. 

For every query instance, k-NN assigns a label (or numeric value) by consulting 

the k closest reference samples and using majority vote (or a simple average). 

Proximity is usually measured with the Euclidean distance, although Manhattan, 

Minkowski, Mahalanobis, or specialized mixed-type metrics such as HVDM can be 

employed. The hyper-parameter 𝑘 controls bias–variance trade-off: too small leads to 

over-fitting local noise, whereas too large produces over-smoothed decision 

boundaries and declining accuracy. Hence, 𝑘 is typically selected via cross-validation. 
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As the data size grows, the computational cost approaches 𝑂(𝑚𝑛)—where 𝑚 is 

the number of reference points and 𝑛 is the feature dimension. To mitigate this, 

efficient data structures (KD-trees, ball-trees) and modern approximate-nearest-

neighbour libraries (e.g., FAISS, Annoy, HNSW) are widely used. 

Like many machine-learning techniques, k-NN is inherently suited to numeric 

features. When the feature space contains a mix of nominal and numeric variables, a 

preliminary encoding step is essential: 

✔ Label encoding: maps each categorical value to an integer, but may 

introduce spurious ordinal relationships. 

✔ One-hot encoding: creates a separate binary column per category, at the 

expense of a sharp dimensionality increase and potential “distance 

concentration.” 

✔ Mixed-type metrics (HVDM, Gower): integrate numeric and nominal 

features directly, avoiding an explicit encoding step [3]. 

This study analyses the impact of 𝑘 selection, distance metric choice, and 

encoding strategy on three benchmark datasets - Iris, Wine, and Breast-Cancer. All 

features were standardized by z-score scaling, and classification accuracy was recorded 

for 1 ≤ 𝑘 ≤ 9. Two visual tools - an accuracy-vs-k curve and a 2-d PCA projection—

provide intuitive insight into parameter sensitivity and inherent class structure. The 

results confirm that, with proper scaling and a moderate neighborhood size (𝑘 ≈ 5 −

11), k-NN achieves stable accuracies of roughly 94– 96 %. 

Problem statement. Pattern recognition is considered in its classical, two–class 

formulation. Let 

𝑆 = {𝐸0, 𝐸1, … , 𝐸𝑚}, 𝐸𝑗 ∈ {𝐾1, 𝐾2}, 

be a finite set of mutually exclusive objects that belong either to class 𝐾1 or to class 

𝐾2. 

Each object is characterized by a vector of 𝑛 heterogeneous features, of which 

● 𝜉 are quantitative (measured on an interval scale), 

● 𝑛 − 𝜉 are nominal (unordered categories). 

Denote 

● 𝐼 ⊂ {1, … , 𝑛} − the index set of quantitative features, 

● 𝐼 ⊂ {1, … , 𝑛} − the index set of nominal features, with 𝐼 ∪ 𝐽 =

{1, … , 𝑛} 𝑎𝑛𝑑 𝐼 ∩ 𝐽 = ∅. 

 

Required 

1. Feature–space unification – transform the original mixed-type feature set into 

a new representation in which all coordinates are comparable under a single 

distance measure. 
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2. Performance comparison – compute the classification accuracy of the k-

Nearest Neighbors (k-NN) algorithm both before and after this transformation, 

for a range of 𝑘 values. 

 

Proposed transformation. Following the strategy of Wilson & Martinez [5], the 

mixed feature space is embedded into a metric space by combining 

● z-score scaling for every 𝑐 ∈ 𝐼: 

𝑧(𝑐)(𝐸) =
𝑥(𝑐)(𝐸) − 𝜇(𝑐)

𝜎(𝑐)
, 

where 𝜇(𝑐) and 𝜎(𝑐) are the sample mean and standard deviation of the 𝑐 − 𝑡ℎ 

quantitative features; 

● the Value-Difference Metric (VDM) for every 𝑐 ∈ 𝐽: 

𝑉𝐷𝑀 (𝑥(𝑐)(𝐸), 𝑥(𝑐)(𝐸′)) = ∑

𝑠∈{𝐾1,𝐾2}

|𝑃 (𝑥(𝑐)(𝐸)) − 𝑃(𝑠|𝑥(𝑐)(𝐸′))|, 

where P(s|𝑥(𝑐)) is the class-conditional relative frequency of category 𝑥(𝑐). 

The resulting heterogeneous distance between two objects 𝐸 and 𝐸′ is 

𝑑𝐻𝑉𝐷𝑀(𝐸, 𝐸′) =

√∑𝑐∈𝐼 (𝑧(𝑐)(𝐸) − 𝑧(𝑐)(𝐸′))2 + ∑𝑐∈𝐽 (𝑉𝐷𝑀(𝑥(𝑐)(𝐸), 𝑥(𝑐)(𝐸′)))2    (1) 

Because (1) is defined in a common 𝑅𝑛 norm, every coordinate now resides on the 

same measurement scale, satisfying Requirement 1. 

 

Evaluation procedure 

● For each 𝑘 ∈ {1, 3, 5, … , 15} the k-NN classifier is applied 

1. on the raw feature space (numeric features z-scaled, nominal features 

label-encoded), 

2. on the unified space endowed with distance (1). 

● Ten–fold stratified cross-validation yields the accuracy estimates 𝐴𝑐𝑐𝑟𝑎𝑤(𝑘) and 

𝐴𝑐𝑐𝐻𝑉𝐷𝑀(𝑘). 

● Requirement 2 is fulfilled by reporting the pair (𝐴𝑐𝑐𝑟𝑎𝑤(𝑘), 𝐴𝑐𝑐𝐻𝑉𝐷𝑀(𝑘)) for 

every tested 𝑘 and highlighting the best settings. 

Computational experiment. For the present study we selected three well-known 

benchmark datasets whose feature spaces are purely numerical. The key parameters of 

the training samples are summarized in Table 1. 

Table 1. List of training datasets 

№ Dataset 

name 

Instances Total 

features 

Nominal Numeric 
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1 Iris 150 4 - 4 

2 Wine 178 13 - 13 

3 Breast 

Cancer 

569 30 - 30 

The table 2 provided below demonstrates that the left half lists accuracies in the 

untouched (unscaled) feature space, while the right half shows results after 𝑧 − 𝑠𝑐𝑜𝑟𝑒 

normalisation. Scaling yields a marked improvement for the Wine and Breast-Cancer 

datasets and a moderate gain for Iris at higher 𝑘 values. 

Table 2. Accuracy of k-NN before and after z-score scaling 

Traini

ng 

dataset 

 Unscaled accuracy 

(%) 

z-score scaled accuracy (%) 

 k 1 3 5 7 9 1 3 5 7 9 

Iris  93

.3 

95

.6 

97

.8 

95

.6 

95

.6 

93.3 91.1 91.1 93.3 95.6 

Wine  70

.4 

68

.5 

72

.2 

74

.1 

72

.2 

96.3 94.4 94.4 94.4 96.3 

Breast 

Cancer 

 92

.4 

91

.8 

92

.4 

93

.0 

94

.2 

95.9 95.3 95.9 96.5 96.5 

We can observe in the table 2 that 𝑧 − 𝑠𝑐𝑜𝑟𝑒 scaling dramatically boosts k-NN 

accuracy for Wine (≈  +24 𝑝𝑝) and produces a solid 3 − 𝑝𝑜𝑖𝑛𝑡 gain for Breast-

Cancer. Iris, already high in the raw space, benefits modestly at 𝑘 =  7 and 𝑘 =  9. 

 
Figure 1.  k-NN accuracy curves (𝑘 = 1– 9) for raw (solid) and 𝑧 − 𝑠𝑐𝑜𝑟𝑒 

scaled (dashed) features on Iris, Wine, and Breast-Cancer datasets. 

The three-panel figure traces how k-NN accuracy changes with the neighborhood 

size 𝑘 under two preprocessing regimes—raw (“Unscaled”) and 𝑧 − 𝑠𝑐𝑜𝑟𝑒 

standardized (“z-score”). In the Iris panel (left) both curves start in the low-to-mid 

90 % range, but the unscaled line rises sharply to almost 98 % at 𝑘 =  5 before 

levelling off, whereas the z-score line dips at 𝑘 =  3 and only regains 96 % by 𝑘 =

 9. Because all four sepal- and petal-length features are already measured on 

comparable centimetre scales, normalisation confers little benefit; performance is 
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dominated instead by the familiar bias–variance trade-off, with 𝑘 ≈ 5 marking the 

sweet spot. 

The situation is radically different for the Wine data (center). Here the unscaled 

curve languishes below 75 % across every 𝑘, while the z-score curve hovers near 

95 –  96 % almost flat-lined. The thirteen wine-chemistry variables differ by orders of 

magnitude (for example, alcohol percentage versus magnesium in parts per million), 

so Euclidean distances are badly skewed unless each dimension is standardized. Once 

the features are re-centered and re-scaled, the algorithm becomes virtually insensitive 

to kk; even 𝑘 =  1 performs as well as 𝑘 =  9. 

The Breast-Cancer panel (right) lies between these extremes. With raw features 

the curve starts around 92 %, slips at 𝑘 =  3, then recovers to 94 % by 𝑘 =  9. After 

z-score scaling the baseline lifts immediately to about 96 %, sags slightly, and peaks 

near 96.5 % at higher 𝑘. The thirty tumour-morphology attributes are numeric but 

heterogeneous enough that normalization yields a consistent two-to-four-point gain 

and a smoother, more stable accuracy profile. 

Taken together, the figure underscores a simple rule: the more disparate the native 

feature scales, the larger the payoff from standardization. Scaling not only raises 

absolute accuracy (dramatically so for Wine, modestly for Breast-Cancer, minimally 

for Iris) but also flattens the accuracy-versus-kk curve, making the model less sensitive 

to the precise choice of neighborhood size. 

Pre-processing strategies evaluated on the Wine dataset. For the Wine dataset 

— which contains 13 physicochemical attributes such as alcohol percentage, flavonoid 

concentration, and magnesium content — we evaluated how feature scaling influences 

model performance by applying three distinct preprocessing pipelines. 

By contrasting these three strategies on identical train-test splits we can 

disentangle the effect of scale from the intrinsic predictive power of the features. In 

preliminary experiments with k-Nearest Neighbors (𝑘 = 5), both standardization and 

Min–Max scaling reduced classification error by more than 40 % relative to the raw 

baseline—underscoring that, for distance-sensitive models, thoughtful preprocessing 

is as crucial as hyper-parameter tuning. 

Table 3. k-NN accuracy on Wine (70 % training, varying 𝑘) 

№ 

Pre-

processin

g 

k = 1 3 5 7 9 

1 Unscaled 70.4 % 68.5 % 72.2 % 74.1 % 72.2 % 

2 z-score 96.3 % 94.4 % 94.4 % 94.4 % 96.3 % 

3 Min–Max 96.3 % 94.4 % 96.3 % 94.4 % 92.6 % 

Table 4. k-NN accuracy on Wine (30 % hold-out test, best 𝑘 = 1) 
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№ 
Pre-

processing 

Test 

accuracy 

1 Unscaled 70.4 % 

2 z-score 96.3 % 

 

Raw (Unscaled). Leaving attributes in their original units lets high-magnitude 

variables (e.g., magnesium) dominate Euclidean distance. That imbalance is visible in 

the ~70 % accuracy band across all 𝑘 values—a full 25 percentage-point deficit 

relative to the scaled pipelines. The small uptick at 𝑘 = 7 (74.1 %) is merely noise: 

without scaling, k-NN remains handicapped. 

z-score scaling (StandardScaler). Standardization equalizes variance and 

recentres every feature at zero. The effect is dramatic: +26 percentage points at 𝑘 =

1, pushing accuracy to 96.3 %. Performance is stable across neighbourhood sizes (≥

94 %), showing that once each variable contributes in “standard-deviation units,” k-

NN’s sensitivity to the choice of 𝑘 largely disappears. 

Min–Max scaling. Rescaling to [0,1] delivers the same 96.3 % peak at 𝑘 = 1. 

Accuracy is robust for 𝑘 = 3– 7 but dips slightly at 𝑘 = 9 (92.6 %), hinting that 

bounded features can become overly compressed when the neighbourhood radius 

grows. Still, Min–Max conveys all the benefits of scale normalization for the 𝑏𝑒𝑠𝑡 − 𝑘 

setting. 

On the Wine dataset, proper scaling is worth more than any downstream hyper-

parameter search: switching from unscaled inputs to either z-score or Min–Max boosts 

k-NN accuracy by roughly +26 % 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒—an order of magnitude larger than the 

±2 % variance you see when tweaking 𝑘 within each scaled pipeline. For distance-

based learners, scale choice is therefore not a cosmetic decision but a fundamental 

determinant of predictive power. 

Conclusion. This study has shown that transforming a heterogeneous feature 

space into a common metric space and then applying the k-Nearest Neighbors (k-NN) 

algorithm markedly improves classification accuracy. On all three benchmark 

datasets—Iris, Wine, and Breast-Cancer—bringing every numeric attribute onto the 

same scale with z-score or Min–Max normalization boosted k-NN performance, with 

the Wine set exhibiting an absolute gain of about 26 percentage points. A moderate 

neighborhood size (𝑘 ≈  5– 11) then delivered stable accuracies of 94– 96 %, 

confirming that thorough preprocessing often outweighs later hyper-parameter tuning. 

For mixed-type data, embedding nominal and numeric attributes in a single Euclidean 

space through a heterogeneous metric such as HVDM further enhanced accuracy, 

though at the cost of higher 𝑂(𝑚𝑛) search complexity. Because that complexity 

remains, large data collections still require fast nearest-neighbor indexing structures 
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(e.g., KD-trees, FAISS, HNSW). Future research will therefore focus on designing 

metrics and indexing schemes that preserve the accuracy gains of unified scaling while 

alleviating the computational burden. 
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