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Annotation: This thesis explores the integration of linguistic morphological 

analysis into machine learning models for natural language processing (NLP). It 
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morphologically rich languages and uses both theoretical frameworks and 

experimental evaluation to support the findings. 
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Introduction 

This study investigates how incorporating morphological information into 

machine learning models can enhance performance in language processing tasks, with 

a focus on lemmatization. Morphology, as a core component of linguistic theory, 

provides valuable structural information that many statistical models tend to overlook. 

By combining linguistic insights with computational techniques, the research aims to 

bridge the gap between theory and practice in NLP. 

Literature analysis and methodology 

The theoretical foundations of morphology, as presented by Aronoff (1976) and 

Booij (2005), highlight the structural role of affixation, root identification, and 

inflection in language. Cotterell and Heigold (2017) showed that morphological 

tagging benefits from character-level modeling across languages. Vania and Lopez 

(2017) explored how different input representations capture morphology in neural 

models. Jurafsky and Martin (2023) emphasize that subword modeling strategies like 

byte-pair encoding (Sennrich et al., 2016) are particularly helpful in handling 

morphological variation, especially in low-resource settings. Overall, the literature 

supports the claim that morphological awareness contributes to model robustness and 

generalization. This study used a comparative design involving two lemmatization 

models: a baseline (without morphology) and a morphology-aware version. Both were 

trained on parallel datasets in Arabic, Russian, and Finnish using annotated corpora.  

Results 

Across all languages tested, the morphology-aware model outperformed the 

baseline in lemmatization accuracy. In Arabic, it effectively handled clitics and 
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irregular verbs. In Russian, it showed stronger disambiguation across case-marked 

forms. In Finnish, it correctly processed long, agglutinative word forms. The model 

was more accurate, especially with rare or unseen word types, and better at generalizing 

in morphologically complex contexts. 

Discussion 

The findings affirm that morphological features significantly enhance machine 

learning performance in lemmatization. Integrating linguistic knowledge allows for 

better word structure modeling and improved results across different languages. This 

validates the relevance of linguistic theory in computational practice. However, 

limitations include reliance on annotated data and increased model complexity. Still, 

the benefits of linguistic integration outweigh these challenges, especially for under-

resourced languages. 

Conclusion 

This thesis demonstrates that integrating morphological analysis into NLP models 

significantly improves lemmatization, especially for morphologically rich languages. 

It supports a hybrid approach that combines linguistic insight with computational 

methods, achieving more interpretable and accurate models. Future research may 

extend this framework to other NLP tasks and explore unsupervised morphology 

learning in low-resource settings. 
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