ПРИМЕНЕНИЕ РОБОТИЗИРОВАННЫХ ТРЕНАЖЁРОВ В РЕАБИЛИТАЦИИ ДВИЖЕНИЙ КИСТИ У ДЕТЕЙ С ДЦП

Исакова Гулчехра Сайиталиевна

Кафедра неврологии Андижанский государственный медицинский иснтитут

Актуальность. Детский церебральный паралич (ДЦП) является одной из наиболее распространённых форм детской инвалидности, сопровождающейся стойкими нарушениями двигательных функций. Наиболее выраженные ограничения проявляются в нарушении мелкой моторики кисти и пальцев, что препятствует выполнению элементарных бытовых, учебных и коммуникативных действий. Утрата или недоразвитие функций кисти снижает качество жизни ребёнка и его способность к социальной адаптации.

Традиционные методы реабилитации, включающие лечебную гимнастику, массаж, кинезотерапию и физиотерапевтические процедуры, имеют безусловную пользу, однако их эффективность нередко ограничена из-за невозможности обеспечить точную дозировку нагрузки, объективный контроль движений и высокий уровень мотивации у детей. В этих условиях использование роботизированных технологий представляет собой перспективное направление в современной нейрореабилитации.

Роботизированные тренажёры для кисти (HandTutor, Amadeo, Gloreha и др.) позволяют выполнять высокочастотные, точно дозированные движения с контролем параметров силы, амплитуды и скорости. Применение таких устройств основано на принципах нейропластичности — способности мозга перестраивать существующие и формировать новые нейронные связи при повторяющихся сенсомоторных стимулах. При этом ребёнок получает визуальную и кинестетическую обратную связь, что способствует активному вовлечению в процесс восстановления.

Современные роботизированные системы оснащены игровыми интерфейсами, которые делают терапию увлекательной и эмоционально позитивной. Дети видят результаты своих движений на экране, соревнуются с собой, получают положительное подкрепление, что значительно повышает мотивацию к систематическим занятиям. В отличие от стандартной терапии, роботренажёры позволяют объективно фиксировать результаты и анализировать динамику реабилитации.

Таким образом, актуальность темы обусловлена необходимостью поиска инновационных методов, способных ускорить восстановление движений кисти у детей с ДЦП, повысить эффективность и индивидуализацию реабилитационного процесса, а также улучшить качество жизни пациентов за счёт активного участия в терапевтическом процессе.

Цель исследования. Изучить эффективность применения роботизированных тренажёров в реабилитации движений кисти у детей с детским церебральным параличом.

Материалы и методы исследования. Исследование проводилось на базе детского реабилитационного центра. В него были включены 40 детей с диагнозом ДЦП в возрасте от 5 до 12 лет. В зависимости от программы реабилитации пациенты были разделены на две группы:

Основная группа (n=20) — проходила курс занятий с использованием роботизированного тренажёра кисти *Amadeo* (Tyromotion, Австрия) в сочетании с сенсомоторными играми и стандартной ЛФК.

Контрольная группа (n=20) — получала традиционную реабилитацию (лечебная гимнастика, массаж, парафинолечение).

Курс терапии продолжался 8 недель, занятия проводились 5 раз в неделю по 40 минут. Оценка эффективности проводилась до и после курса по шкале мелкой моторики Пибоди, тесту Бруинкса-Озерецкого, шкале Эшворта и клиническим наблюдениям.

Результаты исследования. После прохождения курса роботизированной терапии у детей основной группы наблюдалась выраженная положительная динамика моторных показателей. Средний прирост по шкале Пибоди составил 34% против 15% в контрольной группе. У пациентов основной группы улучшилась точность и плавность движений пальцев, увеличилась сила и скорость захвата предметов.

Анализ данных кинематометрии показал, что амплитуда движений пальцев увеличилась в среднем на 22%, сила сжатия — на 27%, а время выполнения теста «захват и перенос предмета» сократилось с 32 до 20 секунд. У 75% пациентов основной группы исчезли патологические содружественные движения (синкинезии), наблюдавшиеся при попытке изолированного движения пальцев.

Уровень спастичности по шкале Эшворта снизился на 1-1,5 балла, что указывает на уменьшение гипертонуса сгибателей. Улучшение отмечалось не только в моторной сфере, но и в эмоционально-поведенческом состоянии: дети становились более уверенными, активными и заинтересованными в упражнениях.

Использование роботизированного тренажёра позволило осуществлять количественную оценку параметров движений и динамически корректировать программу в зависимости от состояния ребёнка. Автоматизированный анализ регистрировал точность, силу, скорость, устойчивость и плавность движений, что повышало объективность и научную достоверность результатов.

нейропсихологического тестирования По результатам улучшение зрительно-моторной координации и пространственного восприятия. Дети стали лучше контролировать движения обеих рук, быстрее реагировать на зрительные улучшились рисования стимулы, навыки письма, самообслуживания. Родители облегчение отмечали значительное В повседневных действиях ребёнка одевании, застёгивании удерживании столовых приборов.

В контрольной группе улучшения также наблюдались, но они были менее выраженными и нестойкими. Через месяц после окончания курса у части детей контрольной группы показатели частично снизились, тогда как в основной

группе достигнутые результаты сохранялись, что свидетельствует о формировании устойчивых нейронных связей.

Таким образом, применение роботизированных тренажёров в реабилитации движений кисти у детей с ДЦП позволяет добиться более быстрого, точного и стабильного восстановления моторных функций. Комбинация механической поддержки, обратной связи и игрового мотивационного компонента обеспечивает не только физическое, но и когнитивно-эмоциональное вовлечение ребёнка в процесс восстановления.

Вывод. Использование роботизированных тренажёров в комплексной реабилитации детей с детским церебральным параличом существенно повышает эффективность восстановления движений кисти. Такие системы обеспечивают точную дозировку нагрузки, визуальную обратную связь, высокий уровень мотивации и объективный контроль динамики. Включение роботизированных технологий в стандартные программы детской нейрореабилитации способствует формированию стойких моторных навыков, активизирует процессы нейропластичности и повышает уровень социальной адаптации детей.