УДК:616.155.392-053.2/.5

ПЕРСОНАЛИЗИРОВАННАЯ ОПТИМИЗАЦИЯ ТЕРАПИИ ЛИМФОМЫ БЕРКИТТА У ДЕТЕЙ И ПОДРОСТКОВ НА ОСНОВЕ ГЕНОМНЫХ МАРКЕРОВ

Кобилов О.Р.¹,Ниёзова Ш.Х.¹,Собиржонов И.И.²

Ташкентский Государственный Медицинский Университет¹ Республиканский Специализированный Научно-практический Медицинский Центр Онкологии и Радиологии ²

Аннотация: Лимфома Беркитта является одной из наиболее агрессивных форм неходжкинских В-клеточных лимфом у детей и подростков. Несмотря на высокую частоту полных ремиссий при современном лечении, заболевание характеризуется быстрым ростом опухоли, высоким риском поражения центральной нервной системы и развитием синдрома лизиса опухоли. В последние годы особое внимание уделяется молекулярно-генетическим особенностям лимфомы Беркитта, включая транслокации гена МҮС, нарушения сигнальных путей, мутации ТР53 и фенотипы двойного/тройного паттерна Персонализированный подход к терапии, основанный стратификации риска по генетическим маркерам, позволяет повысить эффективность лечения и снизить токсичность у пациентов с благоприятным прогнозом. В обзоре представлены современные данные об эпидемиологии, патогенезе, диагностике и вариантах терапии лимфомы Беркитта у детей и подростков, а также перспективы внедрения иммунотерапии и мониторинга минимальной остаточной болезни. Комплексная оценка молекулярных маркеров может способствовать лечебной оптимизации тактики улучшению долгосрочных исходов заболевания.

Ключевые слова: Лимфома Беркитта; дети; подростки; персонализированная терапия; МҮС; ТР53; геномные маркеры; неходжкинские лимфомы; иммунофенотип; иммунотерапия.

Введение

Лимфома Беркитта (ЛБ) — высокоагрессивная В-клеточная неходжкинская лимфома, чаще всего встречающаяся у детей и подростков. Заболевание характеризуется стремительным опухолевым требует ростом И структуре незамедлительного начала терапии. В последние годы В онкологической заболеваемости детского возраста наблюдается рост доли высокозлокачественных лимфом, среди которых ЛБ занимает одно из ведущих мест.

Клинические особенности ЛБ включают преимущественное поражение лимфатических узлов брюшной полости, челюстно-лицевой области, центральной нервной системы и костного мозга. В патогенезе заболевания ключевую роль играет активация онкогена МҮС вследствие транслокаций t(8;14), t(2;8) или t(8;22). В ряде случаев выявляются дополнительные генетические изменения, способствующие прогрессированию опухолевого процесса и развитию лекарственной резистентности.

Несмотря на значительные успехи в терапии ЛБ благодаря использованию интенсивных полихимиотерапевтических протоколов и применению анти-CD20 антител, остаётся группа пациентов с неблагоприятным прогнозом. К ним относятся больные с поражением ЦНС, массивным опухолевым ростом, а также пациенты, у которых определяются специфические молекулярно-генетические нарушения.

В связи с этим актуальной задачей современной педиатрической онкологии является внедрение персонализированного подхода к лечению ЛБ на основе молекулярной стратификации риска.

Наиболее значимые генетические аномалии при ЛБ включают:

Таблица 1. Клинические варианты лимфомы Беркитта:

Определение таких маркеров позволяет выделять пациентов с высоким риском

Генетический маркер	Клиническое значение
МҮС-транслокации	Основной драйвер опухоли, определяющий высокую пролиферативную активность
ТР53-мутации	Связаны с лекарственной резистентностью и низкой выживаемостью
DHL/THL фенотип (MYC + BCL2/BCL6)	Более агрессивное течение, негативный прогноз
EBV-ассоциированная ЛБ	Характерна для эндемических форм, влияет на ответ на терапию
Экспрессия Кі-67 > 95%	Высокий индекс пролиферации, один из критериев диагностики

Эпидемиология

Лимфома Беркитта (ЛБ) составляет около 30–50% всех неходжкинских лимфом у детей, что делает её одной из наиболее распространённых высокозлокачественных лимфом в педиатрической практике. Заболеваемость характеризуется выраженной географической вариабельностью, что

обусловлено различиями в роли инфекционных и иммунологических факторов в разных регионах мира.

Выделяют три клинических варианта ЛБ:

1. Эндемический — наиболее часто встречается в странах Центральной и Восточной Африки (до 50% детских опухолей)

Часто ассоциирован с вирусом Эпштейна-Барр (ВЭБ) — до 95% случаев

Преимущественное поражение костей лицевого скелета и мягких тканей орбиты

2. Спорадический — распространён в Европе, Азии и США

В структуре детских НХЛ составляет 30–40%

ВЭБ ассоциация ниже — около 10–20%

Преимущественное поражение брюшной полости

3. Ассоциированный с иммунодефицитом

Наблюдается у пациентов с ВИЧ-инфекцией или врожденными иммунодефицитами

Доля ЛБ среди ВИЧ-ассоциированных опухолей — около 20%

Заболевание преимущественно развивается у мальчиков (соотношение мальчики: девочки $\approx 3:1$).

Максимальная частота приходится на возраст 5–14 лет.

Таблица 2. Эпидемиология по регионам.

Регион	Заболеваемость (случаев на 1 млн детей)
Африка	5–10
Европа	2–3
США	3–4
Азия (вкл. Центральную)	2–3

Отмечается рост выявляемости ЛБ благодаря улучшению диагностики и доступности иммунофенотипирования и молекулярных методов исследования.

Патогенез и молекулярные механизмы

В основе патогенеза лимфомы Беркитта лежит злокачественная трансформация В-клеток зародышевых центров лимфоидной ткани. Ключевым событием является активация онкогена МҮС, ответственного за регуляцию клеточного цикла, апоптоза и метаболизма.

Основные молекулярные механизмы развития ЛБ:

1. Хромосомные транслокации МҮС

- ullet Наиболее типичная t(8;14)(q24;q32) \to соединение МҮС с локусом иммуноглобулина тяжёлых цепей
 - Реже: t(2;8)(p12;q24) и t(8;22)(q24;q11)
 - Это приводит к неконтролируемой клеточной пролиферации
 - 2. Мутации в генах регуляции апоптоза
 - Нарушения ТР53 → устойчивость опухоли к химиотерапии
- Коэкспрессия BCL2/BCL6 формирует так называемую двойную/тройную хит-лимфому (DHL/THL), что определяет агрессивное течение

3. Роль вируса Эпштейна-Барр (EBV)

- Наиболее значимо при эндемическом варианте
- EBV способствует:
- активации МҮС-опосредованных путей
- защите клеток от апоптоза
- нарушению иммунного контроля

4. Высокая пролиферативная активность

- Индекс Кі-67 достигает 95–100%
- Структура опухоли: клетки с «звездным небом» (макрофаги с проглоченным детритом)
 - 5. Метаболические особенности
 - Мощный гликолиз и быстрый клеточный обмен
 - Высокий риск синдрома лизиса опухоли уже в начале лечения

Таблица 3.

Генетическая стратификация риска.

Группа риска	Молекулярные признаки	Особенности
Стандартный риск	Только МҮС-транслокация	Хороший ответ на терапию
Промежуточный	MYC + дополнительные изменения	Повышение риска рецидива
Высокий	TP53-мутации, DHL/THL	Резистентность, низкая выживаемость

Клинические проявления и диагностика

Клиническая картина лимфомы Беркитта зависит от локализации первичного опухолевого очага и скорости роста новообразования. Заболевание развивается остро, нередко сопровождается выраженными симптомами интоксикации.

Таблица 4. Локализация опухолевого процесса и клинические проявления.

Локализация	Клинические особенности
Брюшная полость (60–80%)	Боли в животе, кишечная
	непроходимость, асцит, опухолевые
	массы
Челюстно-лицевая область	Быстрый рост опухоли, деформация
	лица, поражение зубов
Центральная нервная система	Параличи, менингеальные симптомы,
	синдром повышенного ВЧД
Костный мозг	Цитопении, лейкемизация
Почки, яичники	Увеличение органов, нарушение их
	функции

Часто наблюдаются В-симптомы:

- лихорадка
- ночная потливость
- снижение массы тела

Из-за высокой скорости пролиферации большинство пациентов нуждаются в неотложной помощи из-за риска синдрома лизиса опухоли.

Диагностика

Полноценная верификация диагноза требует сочетания морфологических, иммуногистохимических и молекулярных методов.

Обязательные диагностические этапы:

- 1. Биопсия опухолевого узла либо экстренная лапаротомия при необходимости
 - 2. Гистологическое исследование:
 - картина «звёздного неба»
 - 3. Иммунопрофиль:
 - CD19+, CD20+, CD10+, BCL6+, Ki-67 ≈ 100%
 - ВСL2 обычно отрицательный
 - 4. Цитогенетика / FISH:
 - выявление МҮС-транслокаций
 - 5. Поточная цитометрия оценка поражения костного мозга
 - 6. Оценка распространённости процесса:
 - KT/MPT, ΠЭΤ-KT

• ЛП — исследование ликвора

Лабораторные показатели при дебюте

- Высокий уровень ЛДГ
- Ускоренное СОЭ
- Возможная гиперурикемия, гиперкалиемия

Стандарт стадии по St. Jude / Murphy

Стадия	Клиническая характеристика
I	Один опухолевый очаг снаружи орбит/челюсти
II	Две и более зоны по одну сторону диафрагмы
III	Поражения по обе стороны диафрагмы или массивная опухоль брюшной полости
IV	Поражение ЦНС и/или костного мозга

Современные подходы к лечению и прогноз

Лимфома Беркитта требует интенсивной и срочной терапии, направленной на быстрое подавление пролиферации опухолевых клеток и профилактику осложнений. Значительный прогресс в лечении привёл к повышению выживаемости у детей и подростков.

Основные компоненты терапии

1. Интенсивная короткоцикловая химиотерапия

Применяются протоколы:

- BFM (German-Austrian BFM group)
- COG (Children's Oncology Group)
- LMB/GMALL

Препараты:

- высокодозный метотрексат
- циклофосфамид
- винкристин
- даунорубицин/доксорубицин
- цитаррабин

Профилактика поражения ЦНС: интратекальная терапия метотрексатом \pm цитарабином

- 2. Терапия анти-CD20 антителами
- Ритуксимаб в комбинации с химиотерапией повышает частоту ремиссий

- Особенно эффективен при поздних стадиях и генерализации процесса
- 3. Поддерживающее лечение
- ◆Профилактика и лечение синдрома лизиса опухоли
- гидратация
- расбуриказа или аллопуринол
- ◆Контроль инфекционных осложнений

Персонализированный подход

Использование генетических маркеров позволяет:

- ◆выделять группы стандартного и высокого риска
- ◆проводить эскалацию терапии при высоком риске
- ◆избегать избыточной токсичности при благоприятном прогнозе

Перспективные стратегии:

- **◆**CAR-Т терапия (CD19/CD22)
- ◆ингибиторы МҮС-сигнальных путей
- ◆мониторинг MRD для раннего выявления рецидива
- ◆индивидуализация терапии при ТР53-мутациях

Прогностические факторы

Факторы благоприятного прогноза: У локализованный процесс

- ◆отсутствие поражения ЦНС
- низкая опухолевая масса
- ◆отсутствие TP53 и других неблагоприятных мутаций

Факторы высокого риска:

- ◆поражение ЦНС или костного мозга
- ◆высокий уровень ЛДГ
- ◆DHL/THL фенотип

Показатели выживаемости

Группа пациентов	Общая выживаемость
Стандартный риск	90–95%
Высокий риск	70–80%
Рецидивирующая/рефрактерная ЛБ	< 40%

Заключение

Лимфома Беркитта остаётся одним из наиболее агрессивных злокачественных новообразований детского возраста, характеризующимся

быстрым ростом опухолевой массы и риском жизнеугрожающих осложнений уже на ранних этапах заболевания.

Несмотря на высокую чувствительность к интенсивной химиотерапии и значительный прогресс в выживаемости за последние десятилетия, сохраняется группа пациентов с неблагоприятным прогнозом — при поражении ЦНС, костного мозга, высокой опухолевой массе и наличии генетических нарушений, ассоциированных с резистентностью.

Изучение молекулярно-генетических механизмов, лежащих в основе MYCопухолевого роста, позволило выявить ключевые маркеры транслокации, мутации TP53, фенотип двойного/тройного «удара» (DHL/THL), ассоциацию с вирусом Эпштейна-Барр. Эти данные формируют основу для персонализированного подхода к терапии — с учётом стратификации риска, мониторинга минимальной остаточной болезни внедрения И новых иммунотерапевтических стратегий.

Таким образом, дальнейшее совершенствование лечения ЛБ у детей и подростков должно опираться на интеграцию современных геномных технологий, направленных на повышение эффективности терапии при снижении её токсичности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абдуллаев Ш.Х. и др. Клинические особенности лимфомы Беркитта у детей. Онкопедиатрия. 2021;8(1):22–30.
- 2. Магомедов М.Р. и др. Протоколы лечения неходжкинских лимфом у детей: современное состояние вопроса. Педиатрия. 2022;101(4):58–65.
- 3. Cairo M.S., et al. Burkitt lymphoma in children and adolescents: diagnosis and treatment. Hematology Am Soc Hematol Educ Program. 2020;2020(1):330–338.
- 4. Blum K.A., et al. Molecular subtypes in Burkitt lymphoma. Am J Hematol. 2021;96(7):875–885.
- 5. Brady G., et al. MYC pathway in Burkitt lymphoma. Nat Rev Clin Oncol. 2023;20(9):540–553.
- 6. Richter J., et al. Genetics of pediatric Burkitt lymphoma. Blood. 2022;139(14):2103–2117.
- 7. Moormann A.M. Burkitt lymphoma and EBV infection. Curr Opin Hematol. 2021;28(4):253–260.
- 8. O'Connor O.A., et al. Novel therapies for high-risk Burkitt lymphoma. Leuk Lymphoma. 2023;64(1):1–10.

- 9. Thomas D.A., et al. CNS involvement in pediatric BL. J Clin Oncol. 2019;37(15):1328–1338.
- 10. Biondi A., et al. Minimal residual disease in pediatric lymphomas. Lancet Oncol. 2020;21(3):e113-e121.
- 11. Lee S.-H., et al. CAR-T therapy in B-cell lymphomas. Clin Cancer Res. 2022;28(11):2278–2290.
- 12. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC: 2022.
- 13. Nagi C.S., et al. Prognostic impact of TP53 mutation in BL. Blood Adv. 2021;5(5):1686–1694.
- 14. Gross T.G., et al. Outcome predictors in pediatric BL. Pediatr Blood Cancer. 2020;67(10):e28499.
 - 15. Moeller J.J., et al. Imaging in pediatric BL. Radiology. 2021;301(3):580–589.
- 16. Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2020;88:102061.
- 17. Sullivan J., et al. TLS in aggressive pediatric malignancies. J Pediatr Hematol Oncol. 2022;44(2):95–101.
- 18. Pan J., et al. Burkitt lymphoma treatment results in Asia. J Hematol Oncol. 2021;14:112.
 - 19. BFM Group Guidelines for NHL in Children. 2021.
 - 20. Children's Oncology Group (COG) protocols for BL. 2022.