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Abstract: First-order differential equations play a crucial role in mathematics, 

physics, engineering, and economics. This article examines modern methods for 

solving first-order differential equations, focusing on numerical techniques (e.g., 

Euler, Runge-Kutta), computational tools (e.g., MATLAB, Python), and machine 

learning-based approaches. The advantages, limitations, and practical applications of 

these methods are discussed. The aim of this study is to compare these methods, 

evaluate their effectiveness, and provide guidance for researchers and practitioners. 
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Introduction 

 Differential equations serve as a cornerstone for modeling dynamic processes 

in natural and social sciences. First-order differential equations, expressed in the 

general form dy/dx=f(x,y)  describe the rate of change of a function y(x) y(x) y(x) 

with respect to an independent variable x x x. These equations are ubiquitous in 

applications such as physics (e.g., Newton’s laws of motion), biology (e.g., population 

dynamics), engineering (e.g., control systems), and economics (e.g., financial 

forecasting). Classical analytical methods, such as separation of variables, integrating 

factor techniques, and exact equations, are effective for solving simple linear or 

separable first-order differential equations. However, many real-world problems 

involve nonlinear, stiff, or complex equations that are intractable analytically. The 

advent of modern computational techniques has transformed the field, enabling 

accurate and efficient solutions through numerical methods, computational software, 

and innovative machine learning approaches. This article provides an in-depth 

exploration of modern methods for solving first-order differential equations, 

including numerical algorithms (Euler, Improved Euler, and Runge-Kutta), 

computational tools (MATLAB, Python, and Julia), and machine learning techniques 

(physics-informed neural networks). The study aims to compare these methods in 

terms of accuracy, computational cost, and applicability, offering a comprehensive 

resource for researchers, engineers, and scientists. Additionally, it discusses 

challenges, limitations, and future directions for solving first-order differential 

equations in increasingly complex systems. 
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Literature Review 

 The development of methods for solving first-order differential equations has 

evolved significantly over centuries. Classical analytical techniques, pioneered by 

mathematicians like Euler, Bernoulli, and Lagrange in the 18th and 19th centuries, 

laid the foundation for solving linear and separable equations (Boyce & DiPrima, 

2012). Methods such as separation of variables and the integrating factor technique 

are effective for equations with closed-form solutions but falter when applied to 

nonlinear or complex systems. 

In the 20th century, numerical methods emerged to address these limitations. 

The Euler method, one of the earliest numerical techniques, approximates solutions 

by discretizing the differential equation (Butcher, 2008). While simple, its low 

accuracy spurred the development of more sophisticated methods, such as the Runge-

Kutta family, which offers higher-order accuracy through iterative approximations 

(Runge & Kutta, 1895). The fourth-order Runge-Kutta (RK4) method, in particular, 

became a standard due to its balance of accuracy and computational efficiency. 

 The rise of computational tools in the late 20th and early 21st centuries 

revolutionized numerical solutions. Software like MATLAB, Python (via libraries 

such as scipy.integrate), and Julia (via DifferentialEquations.jl) has made numerical 

methods accessible and efficient for large-scale problems (Chapra & Canale, 2015). 

These tools automate complex calculations and provide built-in solvers optimized for 

various equation types, including stiff systems. 

 More recently, machine learning has introduced novel approaches to solving 

differential equations. Physics-informed neural networks (PINNs), proposed by 

Raissi et al. (2019), leverage deep learning to approximate solutions by embedding 

the governing equations into the neural network’s loss function. This approach is 

particularly promising for high-dimensional, nonlinear, or stiff systems where 

traditional methods may struggle. Other machine learning techniques, such as 

Gaussian processes and reinforcement learning, are also being explored for specific 

applications (Lagaris et al., 1998). This literature review synthesizes classical, 

numerical, computational, and machine learning-based approaches, providing a 

foundation for analyzing modern methods and their practical implications. 
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approximates solutions by discretizing the differential equation (Butcher, 2008). 

While simple, its low accuracy spurred the development of more sophisticated 

methods, such as the Runge-Kutta family, which offers higher-order accuracy through 

iterative approximations (Runge & Kutta, 1895). The fourth-order Runge-Kutta 

(RK4) method, in particular, became a standard due to its balance of accuracy and 

computational efficiency. The rise of computational tools in the late 20th and early 

21st centuries revolutionized numerical solutions. Software like MATLAB, Python 

(via libraries such as scipy.integrate), and Julia (via DifferentialEquations.jl) has 

made numerical methods accessible and efficient for large-scale problems (Chapra & 

Canale, 2015). These tools automate complex calculations and provide built-in 

solvers optimized for various equation types, including stiff systems.More recently, 

machine learning has introduced novel approaches to solving differential equations. 

Physics-informed neural networks (PINNs), proposed by Raissi et al. (2019), leverage 

deep learning to approximate solutions by embedding the governing equations into 

the neural network’s loss function. This approach is particularly promising for high-

dimensional, nonlinear, or stiff systems where traditional methods may struggle. 

Other machine learning techniques, such as Gaussian processes and reinforcement 

learning, are also being explored for specific applications (Lagaris et al., 1998). This 

literature review synthesizes classical, numerical, computational, and machine 

learning-based approaches, providing a foundation for analyzing modern methods 

and their practical implications. 

Modern Methods 

1. Numerical Methods 

Numerical methods approximate solutions to first-order differential equations by 

discretizing the continuous problem into a series of iterative steps. For an equation of 

the form dy/dx=f(x,y) with initial condition y(x0)=y0, numerical methods compute 

approximate values yn≈y(xn) at discrete points xn=x0+nh, where h h h is the step size. 

Below, we discuss key numerical methods in detail. 

1.1 Euler Method 

 The Euler method is the simplest numerical approach, approximating the 

solution using the formula: 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛)                            1. 

 

This method uses the tangent line at each point to estimate the next value. While 

computationally inexpensive, its local truncation error is O(h2), leading to significant 

inaccuracies for small step sizes or stiff equations. The Euler method is best suited for 

simple problems or educational purposes but is rarely used in practice for complex 

systems due to its low accuracy. 
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1.2 Improved Euler Method (Heun’s Method) 

 The Improved Euler method, also known as Heun’s method, enhances the basic 

Euler approach by incorporating a predictor-corrector strategy. It computes an initial 

estimate (predictor) using the Euler method and then refines it (corrector) by 

averaging the slopes at the current and predicted points: 

                                             𝑦𝑛+1
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛)                               2. 

This method reduces the local truncation error to O(h3), offering improved accuracy 

over the Euler method with only a modest increase in computational cost. 

1.3 Runge-Kutta Methods 

 The Runge-Kutta (RK) family of methods provides higher-order 

approximations by evaluating the function f(x,y) f(x, y) f(x,y) at multiple intermediate 

points within each step. The fourth-order Runge-Kutta (RK4) method is particularly 

popular due to its accuracy and efficiency. The RK4 algorithm is given by: 

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛) 

𝑘2 = 𝑓(𝑥𝑛+
ℎ
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With a local truncation error of O(h5), RK4 is highly accurate and widely used 

in applications requiring precise solutions, such as orbital mechanics and fluid 

dynamics. 

1.4 Methods for Stiff Equations 

 Stiff differential equations, characterized by rapidly changing solutions or 

widely varying time scales, pose challenges for explicit methods like Euler or RK4. 

Implicit methods, such as the Backward Euler method or the Trapezoidal Rule, are 

often employed for stiff systems. For example, the Backward Euler method solves: 

                                                            𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛)                             4. 

This requires solving a nonlinear equation at each step, typically using iterative 

techniques like Newton’s method. Implicit methods are computationally intensive but 

stable for stiff problems, making them suitable for applications like chemical kinetics 

or electrical circuits. 

2. Computational Tools: Modern computational tools have transformed the 

solution of differential equations by automating numerical methods and enabling 

large-scale simulations. Below, we discuss three prominent tools: MATLAB, Python, 

and Julia. 
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2.1 MATLAB 

 MATLAB is a widely used platform for numerical computations, offering 

robust solvers for differential equations. The ode45 function, based on an adaptive 

Runge-Kutta method (Dormand-Prince pair), automatically adjusts the step size to 

balance accuracy and efficiency. For stiff equations, MATLAB provides solvers like 

ode15s, which uses implicit methods. MATLAB’s user-friendly interface and 

visualization capabilities make it ideal for engineering and scientific applications. 

2.2 Python 

 Python’s scipy.integrate module provides powerful tools for solving 

differential equations. The odeint function, based on the LSODA algorithm, 

automatically switches between explicit and implicit methods depending on the 

equation’s stiffness. The following example demonstrates solving the equation 

dy/dx=−2xy  with initial condition y(0)=1: 

from scipy.integrate import odeint 

import numpy as np 

import matplotlib.pyplot as plt 

def model(y, x): 

    return -2 * x * y  # dy/dx = -2xy 

x = np.linspace(0, 5, 100) 

y0 = 1 

y = odeint(model, y0, x) 

plt.plot(x, y, label="Solution") 

plt.xlabel("x") 

plt.ylabel("y") 

plt.title("Solution of dy/dx = -2xy") 

plt.legend() 

plt.grid(True) 

plt.show() 

This code produces a numerical solution and visualizes it, demonstrating 

Python’s versatility for both computation and visualization. 

2.3 Julia 

 Julia, a newer programming language, is gaining popularity for scientific 

computing due to its high performance. The DifferentialEquations.jl package offers a 

comprehensive suite of solvers for differential equations, including adaptive Runge-

Kutta methods, implicit methods for stiff systems, and specialized algorithms for 

stochastic or delay differential equations. Julia’s speed and flexibility make it a 

compelling choice for large-scale simulations. 

 

https://scientific-jl.com/wsrj


World scientific research journal 

 

https://scientific-jl.com/wsrj                                                    Volume-40_Issue-1_June-2025 105 

3. Machine Learning Approaches 

Machine learning has introduced innovative methods for solving differential 

equations, particularly for complex or high-dimensional systems. Physics-informed 

neural networks (PINNs) are a prominent example, combining deep learning with 

physical constraints to approximate solutions. 

3.1 Physics-Informed Neural Networks (PINNs) 

 PINNs embed the differential equation and its boundary or initial conditions 

into the loss function of a neural network. For a first-order differential equation 

dy/dx=f(x,y), the neural network approximates y(x) as a function parameterized by 

weights and biases. The loss function includes terms for the differential equation 

residual, initial conditions, and boundary conditions (if applicable). For example, the 

loss function for the equation dy/dx=−2xy might be: 

Loss=∑(dy/dx+2xy)2+(y(0)−1)2 

PINNs are particularly effective for nonlinear equations, high-dimensional systems, 

or problems with irregular domains, where traditional methods may struggle. 

3.2 Other Machine Learning Approaches 

 Beyond PINNs, other machine learning techniques are being explored. 

Gaussian processes can model uncertainty in solutions, while reinforcement learning 

has been applied to optimize numerical solvers. These methods are still in early stages 

but show promise for specialized applications, such as inverse problems or parameter 

estimation. 

Applications 

Modern methods for solving first-order differential equations have broad 

applications across disciplines: 

 Physics: Modeling motion, heat transfer, and electromagnetic systems (e.g., 

solving dv/dt=−g−(k/m)v  for a falling object with air resistance). 

 Economics: Forecasting financial markets or modeling economic growth (e.g., 

Solow-Swan growth models). 

 Environmental Science: Modeling climate systems or pollutant dispersion. 

For example, the Runge-Kutta method is used in orbital mechanics to predict 

satellite trajectories, while PINNs have been applied to fluid dynamics problems with 

complex geometries. Computational tools like MATLAB and Python enable rapid 

prototyping and visualization, making them indispensable in research and industry. 

Discussion 

The modern methods discussed offer distinct advantages and limitations: 

 Numerical Methods: The Euler method is computationally simple but lacks 

accuracy, making it suitable only for basic problems. The Improved Euler and Runge-

Kutta methods offer higher accuracy but require more computational resources. 

Implicit methods excel for stiff equations but involve complex iterative solutions. 
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 Computational Tools: MATLAB, Python, and Julia streamline numerical 

computations and provide adaptive solvers for various equation types. MATLAB is 

user-friendly but proprietary, while Python and Julia are open-source and highly 

customizable. Julia’s performance advantages make it ideal for large-scale problems. 

 Machine Learning: PINNs provide flexibility for nonlinear and high-

dimensional systems but require significant computational power and expertise in 

deep learning. They are less mature than numerical methods but show promise for 

future applications. 

 Challenges include balancing accuracy and computational cost, handling stiff 

equations, and scaling methods to high-dimensional systems. For instance, while RK4 

is accurate for smooth solutions, it may fail for stiff problems, necessitating implicit 

methods. Similarly, PINNs require careful tuning of neural network architectures and 

large datasets for training. Future directions include hybrid approaches that combine 

numerical methods with machine learning, such as using neural networks to optimize 

step sizes in Runge-Kutta methods. Advances in quantum computing may also enable 

faster solutions for large-scale differential equations. 

Conclusion 

Modern methods for solving first-order differential equations—numerical 

techniques, computational tools, and machine learning approaches—have 

significantly advanced the ability to model complex systems. Numerical methods like 

Runge-Kutta provide high accuracy for smooth problems, while implicit methods 

address stiff systems. Computational tools like MATLAB, Python, and Julia automate 

and optimize solutions, making them accessible to a wide audience. Machine learning, 

particularly PINNs, offers innovative solutions for nonlinear and high-dimensional 

problems. By understanding the strengths and limitations of these methods, 

researchers and practitioners can select the most appropriate approach for their needs. 

Future advancements in hybrid methods, artificial intelligence, and computational 

hardware promise to further enhance the field, opening new possibilities for solving 

complex differential equations. 
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