
World scientific research journal

https://scientific-jl.com/wsrj Volume-40_Issue-1_June-2025 100

MODERN METHODS FOR SOLVING FIRST-ORDER

DIFFERENTIAL EQUATIONS

Jonqobilov Jahongir Tirkashevich

Tashkent State Technical University,

Almalyk Branch, Assistant

Abstract: First-order differential equations play a crucial role in mathematics,

physics, engineering, and economics. This article examines modern methods for

solving first-order differential equations, focusing on numerical techniques (e.g.,

Euler, Runge-Kutta), computational tools (e.g., MATLAB, Python), and machine

learning-based approaches. The advantages, limitations, and practical applications of

these methods are discussed. The aim of this study is to compare these methods,

evaluate their effectiveness, and provide guidance for researchers and practitioners.

Keywords: differential equations, first-order, numerical methods, Runge-Kutta,

machine learning, MATLAB, Python.

Introduction

 Differential equations serve as a cornerstone for modeling dynamic processes

in natural and social sciences. First-order differential equations, expressed in the

general form dy/dx=f(x,y) describe the rate of change of a function y(x) y(x) y(x)

with respect to an independent variable x x x. These equations are ubiquitous in

applications such as physics (e.g., Newton’s laws of motion), biology (e.g., population

dynamics), engineering (e.g., control systems), and economics (e.g., financial

forecasting). Classical analytical methods, such as separation of variables, integrating

factor techniques, and exact equations, are effective for solving simple linear or

separable first-order differential equations. However, many real-world problems

involve nonlinear, stiff, or complex equations that are intractable analytically. The

advent of modern computational techniques has transformed the field, enabling

accurate and efficient solutions through numerical methods, computational software,

and innovative machine learning approaches. This article provides an in-depth

exploration of modern methods for solving first-order differential equations,

including numerical algorithms (Euler, Improved Euler, and Runge-Kutta),

computational tools (MATLAB, Python, and Julia), and machine learning techniques

(physics-informed neural networks). The study aims to compare these methods in

terms of accuracy, computational cost, and applicability, offering a comprehensive

resource for researchers, engineers, and scientists. Additionally, it discusses

challenges, limitations, and future directions for solving first-order differential

equations in increasingly complex systems.

https://scientific-jl.com/wsrj

World scientific research journal

https://scientific-jl.com/wsrj Volume-40_Issue-1_June-2025 101

Literature Review

 The development of methods for solving first-order differential equations has

evolved significantly over centuries. Classical analytical techniques, pioneered by

mathematicians like Euler, Bernoulli, and Lagrange in the 18th and 19th centuries,

laid the foundation for solving linear and separable equations (Boyce & DiPrima,

2012). Methods such as separation of variables and the integrating factor technique

are effective for equations with closed-form solutions but falter when applied to

nonlinear or complex systems.

In the 20th century, numerical methods emerged to address these limitations.

The Euler method, one of the earliest numerical techniques, approximates solutions

by discretizing the differential equation (Butcher, 2008). While simple, its low

accuracy spurred the development of more sophisticated methods, such as the Runge-

Kutta family, which offers higher-order accuracy through iterative approximations

(Runge & Kutta, 1895). The fourth-order Runge-Kutta (RK4) method, in particular,

became a standard due to its balance of accuracy and computational efficiency.

 The rise of computational tools in the late 20th and early 21st centuries

revolutionized numerical solutions. Software like MATLAB, Python (via libraries

such as scipy.integrate), and Julia (via DifferentialEquations.jl) has made numerical

methods accessible and efficient for large-scale problems (Chapra & Canale, 2015).

These tools automate complex calculations and provide built-in solvers optimized for

various equation types, including stiff systems.

 More recently, machine learning has introduced novel approaches to solving

differential equations. Physics-informed neural networks (PINNs), proposed by

Raissi et al. (2019), leverage deep learning to approximate solutions by embedding

the governing equations into the neural network’s loss function. This approach is

particularly promising for high-dimensional, nonlinear, or stiff systems where

traditional methods may struggle. Other machine learning techniques, such as

Gaussian processes and reinforcement learning, are also being explored for specific

applications (Lagaris et al., 1998). This literature review synthesizes classical,

numerical, computational, and machine learning-based approaches, providing a

foundation for analyzing modern methods and their practical implications.

Literature Review

 The development of methods for solving first-order differential equations has

evolved significantly over centuries. Classical analytical techniques, pioneered by

mathematicians like Euler, Bernoulli, and Lagrange in the 18th and 19th centuries,

laid the foundation for solving linear and separable equations (Boyce & DiPrima,

2012). Methods such as separation of variables and the integrating factor technique

are effective for equations with closed-form solutions but falter when applied to

nonlinear or complex systems. In the 20th century, numerical methods emerged to

address these limitations. The Euler method, one of the earliest numerical techniques,

https://scientific-jl.com/wsrj

World scientific research journal

https://scientific-jl.com/wsrj Volume-40_Issue-1_June-2025 102

approximates solutions by discretizing the differential equation (Butcher, 2008).

While simple, its low accuracy spurred the development of more sophisticated

methods, such as the Runge-Kutta family, which offers higher-order accuracy through

iterative approximations (Runge & Kutta, 1895). The fourth-order Runge-Kutta

(RK4) method, in particular, became a standard due to its balance of accuracy and

computational efficiency. The rise of computational tools in the late 20th and early

21st centuries revolutionized numerical solutions. Software like MATLAB, Python

(via libraries such as scipy.integrate), and Julia (via DifferentialEquations.jl) has

made numerical methods accessible and efficient for large-scale problems (Chapra &

Canale, 2015). These tools automate complex calculations and provide built-in

solvers optimized for various equation types, including stiff systems.More recently,

machine learning has introduced novel approaches to solving differential equations.

Physics-informed neural networks (PINNs), proposed by Raissi et al. (2019), leverage

deep learning to approximate solutions by embedding the governing equations into

the neural network’s loss function. This approach is particularly promising for high-

dimensional, nonlinear, or stiff systems where traditional methods may struggle.

Other machine learning techniques, such as Gaussian processes and reinforcement

learning, are also being explored for specific applications (Lagaris et al., 1998). This

literature review synthesizes classical, numerical, computational, and machine

learning-based approaches, providing a foundation for analyzing modern methods

and their practical implications.

Modern Methods

1. Numerical Methods

Numerical methods approximate solutions to first-order differential equations by

discretizing the continuous problem into a series of iterative steps. For an equation of

the form dy/dx=f(x,y) with initial condition y(x0)=y0, numerical methods compute

approximate values yn≈y(xn) at discrete points xn=x0+nh, where h h h is the step size.

Below, we discuss key numerical methods in detail.

1.1 Euler Method

 The Euler method is the simplest numerical approach, approximating the

solution using the formula:

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛) 1.

This method uses the tangent line at each point to estimate the next value. While

computationally inexpensive, its local truncation error is O(h2), leading to significant

inaccuracies for small step sizes or stiff equations. The Euler method is best suited for

simple problems or educational purposes but is rarely used in practice for complex

systems due to its low accuracy.

https://scientific-jl.com/wsrj

World scientific research journal

https://scientific-jl.com/wsrj Volume-40_Issue-1_June-2025 103

1.2 Improved Euler Method (Heun’s Method)

 The Improved Euler method, also known as Heun’s method, enhances the basic

Euler approach by incorporating a predictor-corrector strategy. It computes an initial

estimate (predictor) using the Euler method and then refines it (corrector) by

averaging the slopes at the current and predicted points:

 𝑦𝑛+1
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛) 2.

This method reduces the local truncation error to O(h3), offering improved accuracy

over the Euler method with only a modest increase in computational cost.

1.3 Runge-Kutta Methods

 The Runge-Kutta (RK) family of methods provides higher-order

approximations by evaluating the function f(x,y) f(x, y) f(x,y) at multiple intermediate

points within each step. The fourth-order Runge-Kutta (RK4) method is particularly

popular due to its accuracy and efficiency. The RK4 algorithm is given by:

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛)

𝑘2 = 𝑓(𝑥𝑛+
ℎ

2
, 𝑦𝑛+

ℎ

2
𝑘1)

𝑘3 = 𝑓(𝑥𝑛+
ℎ

2
, 𝑦𝑛+

ℎ

2
𝑘2) 3.

𝑘4 = 𝑓(𝑥𝑛+1, 𝑦𝑛 + ℎ𝑘3)

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 3𝑘3 + 𝑘4)

With a local truncation error of O(h5), RK4 is highly accurate and widely used

in applications requiring precise solutions, such as orbital mechanics and fluid

dynamics.

1.4 Methods for Stiff Equations

 Stiff differential equations, characterized by rapidly changing solutions or

widely varying time scales, pose challenges for explicit methods like Euler or RK4.

Implicit methods, such as the Backward Euler method or the Trapezoidal Rule, are

often employed for stiff systems. For example, the Backward Euler method solves:

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛) 4.

This requires solving a nonlinear equation at each step, typically using iterative

techniques like Newton’s method. Implicit methods are computationally intensive but

stable for stiff problems, making them suitable for applications like chemical kinetics

or electrical circuits.

2. Computational Tools: Modern computational tools have transformed the

solution of differential equations by automating numerical methods and enabling

large-scale simulations. Below, we discuss three prominent tools: MATLAB, Python,

and Julia.

https://scientific-jl.com/wsrj

World scientific research journal

https://scientific-jl.com/wsrj Volume-40_Issue-1_June-2025 104

2.1 MATLAB

 MATLAB is a widely used platform for numerical computations, offering

robust solvers for differential equations. The ode45 function, based on an adaptive

Runge-Kutta method (Dormand-Prince pair), automatically adjusts the step size to

balance accuracy and efficiency. For stiff equations, MATLAB provides solvers like

ode15s, which uses implicit methods. MATLAB’s user-friendly interface and

visualization capabilities make it ideal for engineering and scientific applications.

2.2 Python

 Python’s scipy.integrate module provides powerful tools for solving

differential equations. The odeint function, based on the LSODA algorithm,

automatically switches between explicit and implicit methods depending on the

equation’s stiffness. The following example demonstrates solving the equation

dy/dx=−2xy with initial condition y(0)=1:

from scipy.integrate import odeint

import numpy as np

import matplotlib.pyplot as plt

def model(y, x):

 return -2 * x * y # dy/dx = -2xy

x = np.linspace(0, 5, 100)

y0 = 1

y = odeint(model, y0, x)

plt.plot(x, y, label="Solution")

plt.xlabel("x")

plt.ylabel("y")

plt.title("Solution of dy/dx = -2xy")

plt.legend()

plt.grid(True)

plt.show()

This code produces a numerical solution and visualizes it, demonstrating

Python’s versatility for both computation and visualization.

2.3 Julia

 Julia, a newer programming language, is gaining popularity for scientific

computing due to its high performance. The DifferentialEquations.jl package offers a

comprehensive suite of solvers for differential equations, including adaptive Runge-

Kutta methods, implicit methods for stiff systems, and specialized algorithms for

stochastic or delay differential equations. Julia’s speed and flexibility make it a

compelling choice for large-scale simulations.

https://scientific-jl.com/wsrj

World scientific research journal

https://scientific-jl.com/wsrj Volume-40_Issue-1_June-2025 105

3. Machine Learning Approaches

Machine learning has introduced innovative methods for solving differential

equations, particularly for complex or high-dimensional systems. Physics-informed

neural networks (PINNs) are a prominent example, combining deep learning with

physical constraints to approximate solutions.

3.1 Physics-Informed Neural Networks (PINNs)

 PINNs embed the differential equation and its boundary or initial conditions

into the loss function of a neural network. For a first-order differential equation

dy/dx=f(x,y), the neural network approximates y(x) as a function parameterized by

weights and biases. The loss function includes terms for the differential equation

residual, initial conditions, and boundary conditions (if applicable). For example, the

loss function for the equation dy/dx=−2xy might be:

Loss=∑(dy/dx+2xy)2+(y(0)−1)2

PINNs are particularly effective for nonlinear equations, high-dimensional systems,

or problems with irregular domains, where traditional methods may struggle.

3.2 Other Machine Learning Approaches

 Beyond PINNs, other machine learning techniques are being explored.

Gaussian processes can model uncertainty in solutions, while reinforcement learning

has been applied to optimize numerical solvers. These methods are still in early stages

but show promise for specialized applications, such as inverse problems or parameter

estimation.

Applications

Modern methods for solving first-order differential equations have broad

applications across disciplines:

 Physics: Modeling motion, heat transfer, and electromagnetic systems (e.g.,

solving dv/dt=−g−(k/m)v for a falling object with air resistance).

 Economics: Forecasting financial markets or modeling economic growth (e.g.,

Solow-Swan growth models).

 Environmental Science: Modeling climate systems or pollutant dispersion.

For example, the Runge-Kutta method is used in orbital mechanics to predict

satellite trajectories, while PINNs have been applied to fluid dynamics problems with

complex geometries. Computational tools like MATLAB and Python enable rapid

prototyping and visualization, making them indispensable in research and industry.

Discussion

The modern methods discussed offer distinct advantages and limitations:

 Numerical Methods: The Euler method is computationally simple but lacks

accuracy, making it suitable only for basic problems. The Improved Euler and Runge-

Kutta methods offer higher accuracy but require more computational resources.

Implicit methods excel for stiff equations but involve complex iterative solutions.

https://scientific-jl.com/wsrj

World scientific research journal

https://scientific-jl.com/wsrj Volume-40_Issue-1_June-2025 106

 Computational Tools: MATLAB, Python, and Julia streamline numerical

computations and provide adaptive solvers for various equation types. MATLAB is

user-friendly but proprietary, while Python and Julia are open-source and highly

customizable. Julia’s performance advantages make it ideal for large-scale problems.

 Machine Learning: PINNs provide flexibility for nonlinear and high-

dimensional systems but require significant computational power and expertise in

deep learning. They are less mature than numerical methods but show promise for

future applications.

 Challenges include balancing accuracy and computational cost, handling stiff

equations, and scaling methods to high-dimensional systems. For instance, while RK4

is accurate for smooth solutions, it may fail for stiff problems, necessitating implicit

methods. Similarly, PINNs require careful tuning of neural network architectures and

large datasets for training. Future directions include hybrid approaches that combine

numerical methods with machine learning, such as using neural networks to optimize

step sizes in Runge-Kutta methods. Advances in quantum computing may also enable

faster solutions for large-scale differential equations.

Conclusion

Modern methods for solving first-order differential equations—numerical

techniques, computational tools, and machine learning approaches—have

significantly advanced the ability to model complex systems. Numerical methods like

Runge-Kutta provide high accuracy for smooth problems, while implicit methods

address stiff systems. Computational tools like MATLAB, Python, and Julia automate

and optimize solutions, making them accessible to a wide audience. Machine learning,

particularly PINNs, offers innovative solutions for nonlinear and high-dimensional

problems. By understanding the strengths and limitations of these methods,

researchers and practitioners can select the most appropriate approach for their needs.

Future advancements in hybrid methods, artificial intelligence, and computational

hardware promise to further enhance the field, opening new possibilities for solving

complex differential equations.

References:

1. Reddy, J. N. - "An Introduction to the Finite Element Method," McGraw-Hill,

2006. Finite element usuli asoslari va ularning muhandislikda qo‘llanilishi.

2. Kreyszig, E. - "Advanced Engineering Mathematics," Wiley, 2011. Zamonaviy

matematik usullar va ularning muhandislik sohalaridagi qo‘llanilishi.

3. Boyce, W. E., DiPrima, R. C. - "Elementary Differential Equations and

Boundary Value Problems," John Wiley & Sons, 2017. Differensial tenglamalar

va chegaraviy qiymat masalalarini yechishning asosiy usullari haqida.

4. Jonqobilov, J.T.. Texnologik Jarayonlarni Monitoring Qilish Va Vizualizatsiya

Usullari. 192-201

https://scientific-jl.com/wsrj

World scientific research journal

https://scientific-jl.com/wsrj Volume-40_Issue-1_June-2025 107

5. Manshurov, Sh.T.; Jonqobilov, J.T.. C++ Dasturlarlash Tilida n-Xonali

Palindromik Sonlarni Topish. 173-178

6. Djabbarov, Odil Djurayevich; Jonqobilov, Jahongir Tirkashevich.

TRIGONOMETRIK FUNKSIYALARNI EKVIVALENT TA’RIFI HAQIDA.

581-585

7. Муминов, Ф. М., Душатов, Н. Т., Миратоев, З. М., & Ибодуллаева, М. Ш.

ОБ ОДНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ УРАВНЕНИЯ ТРЕТЬЕГО

ПОРЯДКА СМЕШАННО-СОСТАВНОГО ТИПА. Innovative, educational,

natural and social sciences, 2(6), 606-612.

https://scientific-jl.com/wsrj

