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Abstract: This article examines the relationship between classical and modern 

methods for solving first and second-order differential equations and the differences 

in their solutions. Classical methods are based on analytical solutions, while modern 

methods utilize numerical techniques to solve complex equations. The connection 
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modeling is analyzed. Modern methods, with the aid of computers, provide 

significant opportunities for modeling large and complex systems. 
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Introduction 

Differential equations are used to model numerous physical, technological, and 

engineering processes. They describe the changes in objects or systems. While first 

and second-order differential equations have traditionally been solved using classical 

methods through analytical solutions, with the development of modern technologies 

and complex systems, modern numerical methods have become widely applied. This 

article reviews classical and modern methods, analyzing their differences and 

interconnections. 

Methodological Analysis 

1. First-Order Differential Equations 

Classical Methods: Classical methods are frequently used to describe various 

physical, chemical, and technological processes. These methods are widely applied 

for analytically solving first-order differential equations. Among them, the method of 

separation of variables and the integrating factor method are the most commonly used. 

 Separation of Variables Method: The separation of variables method is one 

of the most fundamental and straightforward techniques for solving first-order 

differential equations. This method relies on representing variables in a separable 

form and is applied to equations of the following form: 

                                                                 
𝒅𝒚

𝒅𝒙
= 𝒇(𝒙)𝒈(𝒚)                                                     

1. 
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Here, f(x) depends only on x, and g(y) depends only on y. The essence of the 

method is to separate the variables into two parts: 

                                                                 
𝟏

𝒈(𝒚)
𝒅𝒚 = 𝒇(𝒙)𝒅𝒙                                                  

2. 

Then, each part is integrated separately: 

                                                                        ∫
𝟏

𝒈(𝒚)
𝒅𝒚 = ∫ 𝒇(𝒙)𝒅𝒙                                          

3. 

The solution is obtained by integrating the separated variables. This method is 

applicable only to equations where variables can be separated but is highly effective 

for many simple systems. 

Practical Example: Let’s solve the following simple equation: 

𝒅𝒚

𝒅𝒙
= 𝟐𝒙𝒚  

Separate the variables :  

𝟏

𝒚
𝒅𝒚 = 𝟐𝒙𝒅𝒙 

Integration Result: 

∫
𝟏

𝒚
𝒅𝒚 = ∫ 𝟐𝒙𝒅𝒙 

𝒍𝒏 ∣ y ∣= 𝒙𝟐 + 𝑪 

Express the solution in terms of y: 

𝒚 = 𝑪𝒆𝒙𝟐
 

This is the general solution obtained using the separation of variables method. 

Integrating Factor Method: The integrating factor method is also used to solve 

first-order differential equations but requires additional steps. The simple integrating 

factor method is applied to linear equations of the form: 

𝒅𝒚

𝒅𝒙
+ 𝑷(𝒙)𝒚 = 𝑸(𝒙) 

where P(x) and Q(x) - are functions of x. To solve this equation using the 

integrating factor method, the following steps are taken: 

Multiply the equation by the integrating factor μ(x): 

                                            𝝁(𝒙) = 𝒆∫ 𝑷(𝒙)𝒅𝒙                                                    4. 

Multiply each term of the equation by the integrating factor μ(x): 

                                         𝝁(𝒙)
𝒅𝒚

𝒅𝒙
+ 𝝁(𝒙)𝑷(𝒙)𝒚 = 𝝁(𝒙)𝑸(𝒙)                        5. 

The equation now takes the form: 
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𝒅

𝒅𝒙
[μ(x)y] = 𝝁(𝒙)𝑸(𝒙)                                     6. 

Now integrate the entire equation: 

                                            𝝁(𝒙)𝒚 = ∫ 𝝁(𝒙)𝑸(𝒙)𝒅𝒙 + 𝑪                                 7. 

Here, C is an arbitrary constant. Then, solve for y: 

                                          𝒚 =
𝟏

𝝁(𝒙)
(∫ 𝝁(𝒙)𝑸(𝒙)𝒅𝒙 + 𝑪 )                                   8. 

The separation of variables and integrating factor methods are classical 

approaches for solving first-order differential equations and are widely used in 

modeling simple physical and mathematical processes. While the separation of 

variables method directly integrates separated variables, the integrating factor method 

is applied to more complex equations. Understanding these methods provides a 

foundation for modern numerical methods and is useful for solving many engineering 

problems. 

2. Second-Order Differential Equations 

Method of Undetermined Coefficients: Second-order differential equations 

are often used to solve physical problems, particularly in modeling vibrations, heat 

conduction, and electromagnetic processes. One of the classical methods is the 

method of undetermined coefficients, commonly used to solve second-order 

equations. The equation is written in the following form: 

                                        𝒂
𝒅𝟐𝒚

𝒅𝒙𝟐 + 𝒃
𝒅𝒚

𝒅𝒙
+ 𝒄𝒚 = 𝟎                                              9. 

This equation is transformed into a characteristic equation: 

                                           𝒂𝒓𝟐 + 𝒃𝒓 + 𝒄 = 𝟎                                                 10. 

By solving the characteristic equation, the general solution is obtained. If the 

discriminant is positive, it has two real roots, and the solution is written as: 

                                      𝒚(𝒙) = 𝑪𝟏𝒆𝒓𝟏𝒙 + 𝑪𝟐𝒆𝒓𝟐𝒙                                            11. 

Here r1 and r2 are the roots of the characteristic equation, 𝑪𝟏 and  𝑪𝟐 – are 

arbitrary constants. 

Example: Consider the following equation: 

𝒅𝟐𝒚

𝒅𝒙𝟐
− 𝟓

𝒅𝒚

𝒅𝒙
+ 𝟔𝒚 = 𝟎 

The characteristic equation is: 

𝒓𝟐 − 𝟓𝒓 + 𝟔 = 𝟎 

Thus, the general solution is: 

𝒚(𝒙) = 𝑪𝟏𝒆𝟐𝒙 + 𝑪𝟐𝒆𝟑𝒙 

Two Identical Real Roots: If the discriminant is zero, the characteristic equation 

has two identical real roots. In this case, the general solution is written as: 
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                                               𝒚(𝒙) = (𝑪𝟏 + 𝑪𝟐𝒙)𝒆𝒓𝒙                                       12. 

Two Complex Roots: If the discriminant is negative, the equation has two 

complex roots of the form: 

𝒓 = 𝜶 + 𝒊𝜷 

In this case, the general solution is expressed in terms of trigonometric functions: 

                             𝒚(𝒙) = 𝒆𝒂𝒙(𝑪𝟏𝒄𝒐𝒔(𝜷𝒙) + 𝑪𝟐𝒔𝒊𝒏(𝜷𝒙))                                      13. 

Solving Homogeneous and Nonhomogeneous Equations: 

Homogeneous Equations: These are equations where the right-hand side is 

zero, with the general form: 

                                                    𝒂
𝒅𝟐𝒚

𝒅𝒙𝟐 + 𝒃
𝒅𝒚

𝒅𝒙
+ 𝒄𝒚 = 𝟎                                             14. 

 Homogeneous equations are solved using classical methods, such as the 

method of undetermined coefficients described above. 

Nonhomogeneous Equations: These are equations with a non-zero right-hand 

side, of the form: 

                                                 𝒂
𝒅𝟐𝒚

𝒅𝒙𝟐 + 𝒃
𝒅𝒚

𝒅𝒙
+ 𝒄𝒚 = 𝒇(𝒙)                                            

15. 

Here, f(x) is a given function on the right-hand side. The general solution for 

nonhomogeneous equations consists of two parts: 

 The general solution to the homogeneous equation. 

 A particular solution (for the nonhomogeneous part). 

 To find the particular solution, various methods, such as the method of 

variation of parameters or the method of undetermined coefficients, are used. For 

example, if the right-hand side contains a sine or cosine function, the solution can be 

found using a particular solution corresponding to that function. 

 Second-order differential equations are widely used in engineering, physics, 

and other scientific processes. The method of undetermined coefficients is highly 

effective for solving simple differential equations and is used to find general solutions 

for various cases. Unlike homogeneous equations, nonhomogeneous equations 

require particular solutions for the nonhomogeneous part. Understanding these 

methods is of great importance in modern mathematical modeling and is applied to 

solve many scientific and technical problems. 

3. Modern Methods 

Classical methods for solving second-order differential equations often provide 

exact analytical solutions, but in the real world, many problems are too complex, 

making it difficult or impossible to find analytical solutions. Therefore, modern 

numerical methods are widely used to solve these equations. Below, two such 
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methods—finite element method and boundary value methods—are discussed in 

detail. 

a) Finite Element Method (FEM) 

The Finite Element Method (FEM) is a modern mathematical approach used to 

model complex geometries and loading conditions. It is widely applied in 

engineering, physics, and other technical fields, particularly in structural analysis, 

fluid mechanics, electromagnetic fields, and many other areas. 

The finite element method involves dividing the domain into smaller, simpler 

shapes (elements) and solving the equation for each element. The solutions for these 

elements are combined to obtain the solution for the entire domain. This approach 

includes the following steps: 

 Discretization: The geometry is divided into small elements (e.g., triangles or 

quadrilaterals). 

 Element Equations: Equations are formulated for each element, considering 

their boundary conditions. 

 Solution: The equations for each element are solved, and the results are 

combined to obtain the solution for the entire domain. 

The finite element method is highly effective for second-order differential 

equations, especially in complex systems where exact solutions are difficult to obtain. 

Practical Applications: 

 Structural Analysis: FEM is used to analyze the mechanical state of 

structures, such as stress and deformation. 

 Fluid Mechanics: FEM is widely applied in modeling fluid flow (based on 

Navier-Stokes equations). 

 Electronics and Electromagnetism: Electric fields and electromagnetic wave 

propagation are analyzed using FEM. [11, pp. 39-41] 

b) Boundary Value Methods (BVP) 

Boundary Value Methods (BVP) are numerical methods based on boundary 

conditions for solving differential equations and are commonly used in engineering 

and science. In this method, the solution to the equation must be found over an entire 

interval, where boundary conditions are specified. These conditions often represent 

physical or technical processes. Boundary value methods are significant numerical 

techniques for differential equations, as many engineering problems (e.g., heat 

conduction, fluid flow, elasticity) are boundary value problems. 

Examples: 

 Heat Conduction: For instance, if a rod is held at a given temperature at one 

end and heat flow is calculated at the other, FEM and BVP methods are used to solve 

the heat conduction differential equation. 

 Electromagnetic Fields: Modeling the propagation of electromagnetic waves 

relies on numerical solutions based on boundary conditions. 

https://scientific-jl.com/wsrj


World scientific research journal 

 

https://scientific-jl.com/wsrj                                                    Volume-40_Issue-1_June-2025 113 

Boundary value methods involve the following steps: 

 Discretization: Similar to the finite element method, the domain or system is 

divided into smaller parts. 

 Solving Differential Equations: The equations for each part are solved using 

numerical methods. 

 Applying Boundary Conditions: Solutions for all parts are combined to 

obtain the solution for the entire system. 

Practical Applications: 

 Fluid Motion: Modeling the flow of liquids and gases. 

 Heat Problems: Addressing energy conservation and heat conduction issues. 

 Mechanical Structures: Calculating stress and deformation in machine parts 

under load. 

Conclusion 

Methods for solving first and second-order differential equations are of great 

importance in modern technology and science. Classical methods, such as separation 

of variables and integrating factor methods, are effective for analytically solving 

simple differential equations, but with the advancement of modern technologies, 

numerical methods have been increasingly applied to solve more complex processes. 

Modern methods, such as the finite element method and boundary value methods, are 

widely used in modeling complex geometric shapes, physical processes, and precise 

technological systems. They enable accurate modeling and analysis of real-world 

problems in fields such as heat conduction, fluid mechanics, and mechanical 

structures. Thus, classical and modern methods complement each other, providing 

extensive opportunities for working with differential equations. Applying these 

methods to solve complex technological and scientific problems enhances efficiency 

and ensures the proper functioning of systems. In the future, deeper application of 

these methods will enable the creation of innovative approaches for working with 

complex systems. 
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