АВТОМОРФИЗМЫ АW*-АЛГЕБР ТИПА I

Бекматов Дилмурод Шахобиддинович

Ангрен университети Старший преподаватель

Аннотация: В работе найден общий вид автоморфизмов конечных AW^* алгебр типа І.Структурная теория C^* -модулей начинается с работ И. Капланского, использовавшего эти объекты для алгебраического подхода к теории W^* -алгебр [1,2]. Изучение автоморфизмов операторных алгебр начинается с работы И. Капланского, доказавшего, что всякий автоморфизм AW^* -алгебры типа I, оставляющий центр неподвижным, является внутренним.

В этой заметке мы изучим общий вид автоморфизмов конечных однородных AW^* -алгебр типа I.

Ключевые слова: автоморфизм, AW^* -алгебры, C^* -модули, W^* -алгебры, *-алгебры, аннулятор, дискретность, проектор, оператор, унитальная алгебра, тождественность.

Пусть A — вещественная или комплексная *-алгебра, S — непустое подмножество A . Положим

$$R(S) = \{x \in A : sx = 0 \text{ для всех } s \in S\}$$

и назовем R(S) правым аннулятором S. Аналогично определяется левый аннулятор

$$L(S) = \{x \in A : xs = 0 \text{ для всех } s \in S\}$$
.

Определение 1. *-алгебра A называется бэровской *-алгеброй, если правый аннулятор любого непустого множества $S \subset A$ порождается проектором, т.е. R(S) = gA для некоторого проектора $g \in A$ (т.е. $g^2 = g = g^*$).

Поскольку $L(S) = (R(S^*))^* = (hA)^* = Ah$, то определение симметрично и может быть дано в терминах левых аннуляторов.

Определение 2. Вещественная или комплексная C^* -алгебра A, являющая бэровской *- алгеброй, называется соответственно вещественной или комплексной AW^* -алгеброй.

Очевидно, что всякая вещественная (соответственно, комплексная) W^* -алгебра является вещественной (соответственно, комплексной) AW^* -алгеброй.

Вещественная или комплексная C^* -алгебра A называется ∂ искретной, или $muna\ I$, если M изоморфна AW^* -алгебре с абелевым коммутантом.

Пусть $M-W^*$ -алгебра типа I, z- центральный проектор в M. Предположим, что в M существует семейство $\{p_{\alpha}\}$ попарно ортогональных,

эквивалентных абелевых проекторов, таких, что $z=\sum p_{\alpha}$. Тогда кардинальное число n семейства $\{p_{\alpha}\}$ зависит только от M, и не зависит от выбора $\{p_{\alpha}\}$. Такой центральный проектор z называется n-однородным. Если z=1, то говорят, что M – типа \mathbf{I}_{α} .

Пусть A произвольная алгебра с центром Z(A) и пусть $T:A \to A$ — автоморфизм. Ясно, что T переводит Z(A) на себя. На самом деле, для всех $x \in A$ и $a \in Z(A)$ имеет место

$$T(a)T(x) = T(ax) = T(xa) = T(x)T(a),$$

Это означает, что $T(a) \in Z(A)$.

Оператор $T: A \to A$ называется Z(A)-линейным, если T(ax) = aT(x) для всех $a \in Z(A)$ и $x \in A$. Легко видеть, что автоморфизм $T: A \to A$ унитальной алгебры A является Z(A) - линейной, если и только если оно тождественно на Z(A)

Пусть $M = AW^* -$ алгебра типа I_{∞} с центром Z(M) и $\phi: Z(M) \to Z(M)$ автоморфизм. Из [1, Теорема1] получим, что ϕ продолжается до *-автоморфизмов на всю алгебру M, который обозначим через T_{ϕ} .

Теорема 1. Пусть M - AW^* -алгебра типа I_{∞} . Тогда всякий автоморфизм T на M единственным образом представляется в виде

$$T = T_a T_{\phi} \tag{1}$$

где T_a внутренний автоморфизм порождённый элементом элементом $a \in M$

 $_{\rm H}$ $T_{\scriptscriptstyle \phi}$ *- автоморфизм порождённый автоморфизмом ϕ на Z(M) .

Доказательство. Пусть ϕ сужение T на центр Z(M). Тогда ϕ переводит Z(M) себя. По [1, Терема1] существует автоморфизм T_{ϕ} такое, что $T_{\phi}\big|_{Z(M)} = \phi$. Обозначим $S = T \circ T_{\phi}^{-1}$ так как $T\big|_{Z(M)} = T_{\phi}\big|_{Z(M)}$ то как $S\big|_{Z(M)} = id_{Z(M)}$. По теореме Капланского [2] существует элемент $a \in M$ такое, что $S = T_a$. Так как $S = T \circ T_{\phi}^{-1}$ то $T = T_a T_{\phi}$.

Предположим, что $T=T_a\circ T_\phi=T_b\circ T_\varphi$, где $a,b\in M$ и ϕ,φ автоморфизмы на Z(M). Тогда $T_b^{-1}\circ T_a=T_\varphi\circ T_\phi^{-1}$. Отсуда $T_{b^{-1}a}=T_{\varphi\circ\phi^{-1}}$ так как $T_{b^{-1}a}$ тождественны дествует на центри, то $\varphi\circ\phi^{-1}=id_{Z(M)}$. Это означает, что то $\varphi=\phi$. Поэтому $T_a=T_b$. Теорема доказана.

Аналогичный результат для конечных однородных AW^* -алгебра был получен в [4].

Литература:

- 1. I. Kaplansky, Algebras of type I, Ann. of Math. 56 (1952), 460-472.
- 2. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-859.
- 3. S. Albeverio, Sh. Ayupov, K. Kudaybergenov and R. Djumamuratov, Automorphisms of central extensions of type I von Neumann algebras, Studia Mathematica, N_2 1, (2011) 1-11.
- 4. Нурманов М. Ш. Автоморфизмы конечных однородных AW^* -алгебр типа I, Республиканская конференция "Математическая физика", Бухара, 26-27 ноября 2015 г.