MODERN APPROACHES TO MEDICAL IMAGE PROCESSING USING COMPUTER VISION BASED ON ARTIFICIAL INTELLIGENCE
Keywords:
Keywords: artificial intelligence, computer vision, medical image processing, deep learning, CNN, diagnostics, image segmentation, real-time analysis.Abstract
Annotation: This article explores modern approaches to medical image processing based on artificial intelligence (AI) and computer vision technologies. It analyzes the importance of acquiring, analyzing, enhancing, segmenting, and using images from MRI, CT, X-ray, and ultrasound scans for real-time clinical decision-making. The study also examines the role and potential of deep learning, convolutional neural networks (CNNs), and transfer learning in medical diagnostics.
References
1. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A., van Ginneken, B., & Sánchez, C. I. A survey on deep learning in medical image analysis // Medical Image Analysis. – 2017. – Vol. 42. – P. 60–88.
2. Shen, D., Wu, G., & Suk, H.-I. Deep Learning in Medical Image Analysis // Annual Review of Biomedical Engineering. – 2017. – Vol. 19. – P. 221–248.
3. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. A guide to deep learning in healthcare // Nature Medicine. – 2019. – Vol. 25, № 1. – P. 24–29.
4. Greenspan, H., van Ginneken, B., & Summers, R. M. Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique // IEEE Transactions on Medical Imaging. – 2016. – Vol. 35, № 5. – P. 1153–1159.
5. Lundervold, A. S., & Lundervold, A. An overview of deep learning in medical imaging focusing on MRI // Zeitschrift für Medizinische Physik. – 2019. – Vol. 29, № 2. – P. 102–127.
6. Ker, J., Wang, L., Rao, J., & Lim, T. Deep learning applications in medical image analysis // IEEE Access. – 2018. – Vol. 6. – P. 9375–9389.
7. Suzuki, K. Overview of deep learning in medical imaging // Radiological Physics and Technology. – 2017. – Vol. 10, № 3. – P. 257–273.