SCIENTIFIC BASIS FOR IMPROVING THE EMERGENCY PREDICTION SYSTEM
##semicolon##
Keywords: emergency situations, forecasting systems, artificial intelligence, big data, seismic activity, security, Uzbekistan.##article.abstract##
Abstract. This article examines the scientific basis for improving emergency situation (ES) forecasting systems. The study analyzes ways to increase the accuracy, speed, and efficiency of forecasting using artificial intelligence (AI) and big data technologies [1]. Studies conducted on the example of seismically active regions of Uzbekistan, in particular the Fergana Valley, have shown the advantages of new systems - 20% increased accuracy, 30% reduced time, and 80% adaptation to local infrastructure. The article emphasizes the importance of modern approaches to preventing economic and social damage from ES. At the same time, the financial and technical constraints on the implementation of AI and big data in Uzbekistan were also considered. Although the study is limited by the lack of real-world testing, it provides suggestions for future adaptation to local conditions. The article presents practical solutions for increasing security and optimizing resources.
##submission.citations##
1. Yo‘ldashev, A., & Jalilov, A. (2022). FAVQULODDA VA EKOLOGIK OFAT HOLATLARIDA KORXONALAR BOSHQARUVI. Eurasian Journal of Social Sciences, Philosophy and Culture, 2(13), 269-275.
2. Jalilov, A. (2022). FAVQULODDA VAZIYATLAR VAZIRLIGINING FAVQULODDA VAZIYATLARDA HARAKAT QILISH VA BOSHQARISH MILLIY MARKAZI MANSABDOR SHAXSLARI FAOLIYATIDAGI MUAMMOLI MASALALARNI ANIQLASH VA TAHLIL QILISH MODELI. Science and innovation, 1(C7), 286-294.
3. Jalilov, A. (2023). FVHQ VA BMM TIZIMINI TAKOMILLASHTIRISH MODELI. ООО «МОЯ ПРОФЕССИОНАЛЬНАЯ КАРЬЕРА.
4. Jalilov, A. (2022). MILLIY HARAKAT VA BOSHQARUV MARKAZI MUAMMOLARINING FAOLIYATIDAGI MUAMMOLARNI ANIQLASH VA TAHLIL OLISH NAMUNI. Fan va innovatsiyalar , 1 (7), 286-294.
5. Жалилов, А. (2022). Модель для выявления и анализа проблемных вопросов в деятельности должностных лиц национального центра действий и управления чрезвычайными ситуациями министерства по чрезвычайным ситуациям. in Library, 22(4), 25-32.
6. Jalilov, A. (2021). O’zbekistonda individual ravishda qurilgan binolarning zilzilabardoshligini oshirish yo’llarini takomillashtirish. Scienceweb academic papers collection.
7. Jalilov, A. (2024). TABIIY TUSDAGI FAVQULODDA VAZIYATLARDA TEXNIK TIZIMLAR FAOLIYATINI TAKOMILLASHTIRISH. Nauchno-texnicheskiy jurnal «Matrostroenie» , (2), 20-24.
8. Jalilov, A. (2024). METHODS OF PROTECTION FROM ENVIRONMENTAL EMERGENCIES: A COMPREHENSIVE REVIEW. Web of Discoveries: Journal of Analysis and Inventions, 2(6), 89-94.
9. Jalilov, A. (2024). CONTRIBUTION OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES TO ACHIEVEMENTS IN SCIENCE. Web of Discoveries: Journal of Analysis and Inventions, 2(6), 78-82.
10. Ahmadbek, J. (2024). NEW INNOVATIVE TEACHING METHODS FOR EMERGENCY RESPONSE. AndMI Xalqaro ilmiy-amaliy konferensiyalari, 1(1), 428-431.
11. Makhsudov, M., Karimjonov, D., Abdumalikov, A., Jalilov, A., & Yigitaliyev, M. (2024, November). Method of determination current and power factor based on the output signal. In AIP Conference Proceedings (Vol. 3244, No. 1). AIP Publishing.
12. Jalilov, A. (2024). INTERNATIONAL EXPERIENCES IN THE FIELD OF LABOR PROTECTION: A COMPARATIVE ANALYSIS. Web of Discoveries: Journal of Analysis and Inventions, 2(6), 83-88.