GRAFEN ASOSIDAGI MATERIALLARNING ELEKTROMAGNIT TO‘LQINLARGA NISBATAN O‘ZINI TUTISHI: NAZARIY TAHLIL
Keywords:
Kalit so‘zlar: grafen, elektromagnit to‘lqinlar, yutilish, sirt o‘tkazuvchanligi, dielektrik javob, metamateriallar, Maxwell tenglamalari, Kubo formalizmi, elektromagnit ekranlash, nazariy modellashtirishAbstract
Ushbu maqolada grafen asosidagi materiallarning elektromagnit to‘lqinlar bilan o‘zaro ta’siri nazariy jihatdan tahlil qilinadi. Grafenning noyob elektr o‘tkazuvchanligi, ikki o‘lchamli kristall tuzilmasi va optik xossalarining sozlanuvchanligi uni elektromagnit to‘lqinlarni yutuvchi, o‘tkazuvchi va aks ettiruvchi ilg‘or material sifatida tadqiq qilish imkonini beradi. Maqolada grafenning sirt o‘tkazuvchanligi, kimyoviy potensiali va haroratga bog‘liq dielektrik javobi elektromagnit to‘lqinlarning tarqalishi va yutilishiga qanday ta’sir ko‘rsatishi nazariy modellar asosida tahlil qilinadi. Maxwell tenglamalari va Kubo formalizmi asosida yoritilgan bu tahlil grafen asosidagi kompozit materiallarning elektromagnit ekranlash va optoelektron qurilmalardagi qo‘llanilishi uchun ilmiy asos yaratadi.
References
1. Novoselov, K. S., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.
2. Hanson, G. W. (2008). Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 103(6), 064302.
3. Jablan, M., Buljan, H., & Soljačić, M. (2009). Plasmonics in graphene at infrared frequencies. Physical Review B, 80(24), 245435.
4. Falkovsky, L. A., & Varlamov, A. A. (2007). Space-time dispersion of graphene conductivity. The European Physical Journal B, 56(4), 281–284.
5. Vakil, A., & Engheta, N. (2011). Transformation optics using graphene. Science, 332(6035), 1291–1294.
6. Gusynin, V. P., Sharapov, S. G., & Carbotte, J. P. (2007). Magneto-optical conductivity in graphene. Journal of Physics: Condensed Matter, 19(2), 026222.
7. Bonaccorso, F., et al. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611–622.
8. Bao, Q., & Loh, K. P. (2012). Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 6(5), 3677–3694.
9. Low, T., & Avouris, P. (2014). Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8(2), 1086–1101.
10. Ferreira, A., et al. (2011). Unified description of the dc conductivity of monolayer and bilayer graphene at finite temperatures. Physical Review B, 83(16), 165402.