YANGI ANIQLANGAN QANDLI DIABET BEMORLARDA DIABETIK RETINOPATIYA SKRININGI O‘TKAZILISHIDAGI AXAMIYATI
Keywords:
Kalit so‘zlar: Diabetik retinopatiya, qandli diabet, ko‘rish o‘tkirligi, skrining tekshiruv.Abstract
Annotatsiya. Diabetik retinopatiya(DR) qandli diabet(QD) kasalligining keng tarqalgan asoratlaridan biri. Kasallikni vaqtida aniqlanmasligi bemorlarda o‘zgartirib bo‘lmas degenerativ o‘zgarishlar kelib chiqishiga sabab bo‘ladi. Natijada bemorlarning ko‘rish o‘tkirligi (KO‘) keskin pasayib, keyinchalik davolash imkoni ta’sir etmaydigan ko‘rlik kelib chiqishiga sabab bo‘ladi. QD bemorlarda kasallikning boshlang‘ich davrida DR yashirin tarzda kechishi mumkin. Xozirda dunyo oftalmologlari oldidagi asosiy vazifalardan biri DR belgilarini kasallikning dastlabki davrida aniqlash kabilar yotadi. Faqatgina bemorlarda o‘tkaziladigan skrining tekshiruvlar DRni oldinroq aniqlash imkonini yaratadi. Shu maqsadda biz Andijon viloyatida QD kasalligi yangi aniqlangan 860ta (1714 ko‘z) bemorlarda diabetik retinopatiya skrining (DRS) tekshiruvini amalga oshirdik. Bu bemorlarda oftalmologik tekshiruvlar bilan bir qatorda qondagi qand miqdori xam tekshirildi. Tadqiqot o‘tkazishdan maqsad erta aniqlangan DR belgilarining tashqalish chastotasini aniqlash va QDning birinchi va ikkinchi tur bilan xastalangan bemorlarda DRni kelib chiqishini taqqoslashdir. O‘tkazilgan skrining tekshiruvlar natijasida 102ta (177 ko‘z) bemorlarda DRning belgilari aniqlandi va ularga kerakli davolash rejasi ishlab chiqarildi. QD bilan kasallanish staji 0,2 – 1 yilni tashkil etadi. Aniqlangan DRning 3tasi QDning birinchi turiga, 99tasi ikkinchi turiga mansub. Ularning xayot tarzlari, kasallik tarixlari o‘rganilib chiqildi va DRning erta rivojlanishlariga sabab bo‘lgan omillar o‘rganilib chiqildi. DRS tekshiruvining o‘tkazilishi DRning dastlabki belgilarini aniqlashdagi o‘rni beqiyos bo‘lib, bemorlarning KO‘ni saqlanishida va DR maydonini chegaralanilishi uchun kerakli davolash taktikasini belgilashda muxim axamiyatni kasb etadi.
References
1. Ayoub, S., Khan, M. A., Jadhav, V. P., Anandaram, H., Kumar, T. C. A., Reegu, F. A., Motwani, D., Shrivastava, A. K., & Berhane, R. (2022). Minimized computations of deep learning technique for early diagnosis of diabetic retinopathy using IoT-Based medical devices. Computational Intelligence and Neuroscience, 2022, 1–7. https://doi.org/10.1155/2022/7040141
2. Bai, L., & Wang, Y. (2024). Mesenchymal stem cells-derived exosomes alleviate senescence of retinal pigment epithelial cells by activating PI3K/AKT-Nrf2 signaling pathway in early diabetic retinopathy. Experimental Cell Research, 441(2), 114170. https://doi.org/10.1016/j.yexcr.2024.114170
3. Bi, J., Zhou, W., & Tang, Z. (2024). Pathogenesis of diabetic complications: Exploring hypoxic niche formation and HIF-1α activation. Biomedicine & Pharmacotherapy, 172, 116202. https://doi.org/10.1016/j.biopha.2024.116202
4. Das, T., Islam, K., Dorji, P., Narayanan, R., Rani, P. K., Takkar, B., Thapa, R., Moin, M., Piyasena, P. N., & Sivaprasad, S. (2024). Health transition and eye care policy planning for people with diabetic retinopathy in south Asia. The Lancet Regional Health - Southeast Asia, 27, 100435. https://doi.org/10.1016/j.lansea.2024.100435
5. G, N. C., Golla, M., G, A. N., Kautish, S., Almazyad, A. S., Xiong, G., & Mohamed, A. W. (2024). Evaluating the performance of a Non-Uniform squash function in capsule networks for early diabetic retinopathy detection using FundUs image analysis. Results in Engineering, 102820. https://doi.org/10.1016/j.rineng.2024.102820
6. Hirano, T., Takahashi, Y., Hoshiyama, K., & Murata, T. (2022). Optical coherence tomography angiography findings before and after onset of foveal retinal neovascularization in diabetic retinopathy. American Journal of Ophthalmology Case Reports, 26, 101435. https://doi.org/10.1016/j.ajoc.2022.101435
7. Hsieh, Y., Chuang, L., Jiang, Y., Chang, T., Yang, C., Yang, C., Chan, L., Kao, T., Chen, T., Lin, H., Tsai, C., & Chen, M. (2020). Application of deep learning image assessment software VeriSeeTM for diabetic retinopathy screening. Journal of the Formosan Medical Association, 120(1), 165–171. https://doi.org/10.1016/j.jfma.2020.03.024
8. Kalogeropoulos, D., Kalogeropoulos, C., Stefaniotou, M., & Neofytou, M. (2020). The role of tele-ophthalmology in diabetic retinopathy screening. Journal of Optometry, 13(4), 262–268. https://doi.org/10.1016/j.optom.2019.12.004
9. Katada, Y., Ozawa, N., Masayoshi, K., Ofuji, Y., Tsubota, K., & Kurihara, T. (2020). Automatic screening for diabetic retinopathy in interracial fundus images using artificial intelligence. Intelligence-Based Medicine, 3–4, 100024. https://doi.org/10.1016/j.ibmed.2020.100024
10. Kato, A., Fujishima, K., Takami, K., Inoue, N., Takase, N., Suzuki, N., Suzuki, K., Kuwayama, S., Yamada, A., Sakai, K., Horita, R., Nozaki, M., Yoshida, M., Hirano, Y., Yasukawa, T., & Ogura, Y. (2021). Remote screening of diabetic retinopathy using ultra-widefield retinal imaging. Diabetes Research and Clinical Practice, 177, 108902. https://doi.org/10.1016/j.diabres.2021.108902
11. Liao, D., Fan, W., Li, N., Li, R., Wang, X., Liu, J., Wang, H., & Hou, S. (2024). A single cell atlas of circulating immune cells involved in diabetic retinopathy. iScience, 27(2), 109003. https://doi.org/10.1016/j.isci.2024.109003
12. Melo, G. B., Malerbi, F. K., De Medeiros, J. N., & Grauslund, J. (2023). A comprehensive strategy of diabetic retinopathy screening in a public health system: identifying and overcoming obstacles for implementation. Diabetes Epidemiology and Management, 13, 100192. https://doi.org/10.1016/j.deman.2023.100192
13. Ram, S., Mohammadnezhad, M., Ram, K., Prasad, K., Pal, M., & Dalmia, P. (2022). Increasing and sustaining diabetic retinopathy screening in Fiji by leveraging community health workers (CHWs) services: A qualitative study. Heliyon, 8(11), e11379. https://doi.org/10.1016/j.heliyon.2022.e11379
14. Rohilla, M., Rishabh, N., Bansal, S., Garg, A., Dhiman, S., Dhankhar, S., Saini, M., Chauhan, S., Alsubaie, N., Batiha, G. E., Albezrah, N. K. A., & Singh, T. G. (2023). Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomedicine & Pharmacotherapy, 169, 115881. https://doi.org/10.1016/j.biopha.2023.115881
15. Scott, I., Carter, S., & Coiera, E. (2021). Clinician checklist for assessing suitability of machine learning applications in healthcare. BMJ Health & Care Informatics, 28(1), e100251. https://doi.org/10.1136/bmjhci-2020-100251
16. Tan, H., Fu, X., Chen, Y., Wang, Y., & Chen, D. (2023). Hyperlipidemia and lipid-lowering therapy in diabetic retinopathy (DR): A bibliometric study and visualization analysis in 1993–2023. Heliyon, 9(10), e21109. https://doi.org/10.1016/j.heliyon.2023.e21109
17. Van Eijk, K., Blom, J., Gussekloo, J., Polak, B., & Groeneveld, Y. (2011). Diabetic retinopathy screening in patients with diabetes mellitus in primary care: Incentives and barriers to screening attendance. Diabetes Research and Clinical Practice, 96(1), 10–16. https://doi.org/10.1016/j.diabres.2011.11.003
18. Wan, K. H., Chen, L. J., & Young, A. L. (2013). Screening and referral of diabetic retinopathy. Asia-Pacific Journal of Ophthalmology, 2(5), 310–316. https://doi.org/10.1097/apo.0b013e31829df4a3
19. Zhang, G., Chen, W., Chen, H., Lin, J., Cen, L., Xie, P., Zheng, Y., Ng, T. K., Brelén, M. E., Zhang, M., & Pang, C. P. (2024). Risk factors for diabetic retinopathy, diabetic macular edema, and sight-threatening diabetic retinopathy. Asia-Pacific Journal of Ophthalmology, 13(3), 100067. https://doi.org/10.1016/j.apjo.2024.100067
20. Zou, G., Que, L., Liu, Y., & Lu, Q. (2024). Interplay of endothelial-mesenchymal transition, inflammation, and autophagy in proliferative diabetic retinopathy pathogenesis. Heliyon, 10(3), e25166. https://doi.org/10.1016/j.heliyon.2024.e25166