OPTIMAL LOSS METHOD.
Keywords:
optimal loss, loss function, decision theory, probability model, cost effectiveness, management strategy, statistical estimation, minimization method.Abstract
This article discusses the theoretical foundations and practical application of the optimal loss method. The essence of the method is that it implies decision-making aimed at minimizing losses while managing the activity of an object
or system. The article analyzes the optimal loss criteria, the methods of their calculation and their application to real economic and technical questions. It also outlines strategies for determining optimal losses based on statistical and probability methods. The results of the study serve to increase the effectiveness of the optimal loss method and improve decision-making processes.
References
1. Ahlberg J., Nilson E., Walsh J. Spline theory and "e applications. Moscow, Mir
Publ., 1972. 2. B a h v a l o v N. S. Chislennme metodm, vol. I, Moscow, "Nauka", 1973,
3. B a h v a l o v N. S. Ob optimalnykh otsenkakh velocity skosimosti quadrature
protsessov i metodov integratsii tipa Monte-Carlo na klassnh funktsii [On optimal
estimates of the rate of convergence of quadrature processes and methods of
integration of the Monte-Carlo type on class functions]. "Numerical method of
solving diff. and integral equations and quadrature formulas". Moscow, Nauka, 1964
(5-63-betlar).
4. Berezin I. S., Zhidkov N. P. Metodn vmchisleniy, vol. 1., izd. 3rd. Moscow,
Nauka, 1966.
5. B u s l e n k o N. P. et al. Metodn statisticheskikh ispntanii (metod Monte-Carlo).
Moscow, Fizmatgiz Publ., 1962.
6. V a r g a R. Funktsional'nysh analiz i teoriya approximatsii v chislennom analize
[Functional analysis and the theory of approximation in a chislennom analize].
Moscow, Mir Publ., 1974.
7. V o e v o d i n V. V. Chislenne metodn algebrm. Theory and algorithm. Moscow,
Nauka Publ., 1966.
8. G e l f o n d A. O. Calculus of finite differences, 3rd correction. Ed. Moscow,
Nauka Publ., 1967.
9. Goncharov V. L. Teoriya interpolirovaniya i approximation funktsii [Theory of
interpolation and approximation of functions]. Moscow, Gostekhizdat Publ., 1954.
10. Daugavet I. K. Vvedenie v teoriyu approximations funktsii [Introduction to the
theory of approximations of functions]. Leningrad State University, Leningrad, 1977.