OPTIMAL LOSS METHOD.

Authors

  • A.I.Ismoilov Author
  • Abduhalilova Sohiba Abdurasul qizi Author

Keywords:

optimal loss, loss function, decision theory, probability model, cost effectiveness, management strategy, statistical estimation, minimization method.

Abstract

This article discusses the theoretical foundations and practical application of the optimal loss method. The essence of the method is that it implies decision-making aimed at minimizing losses while managing the activity of an object 
or system. The article analyzes the optimal loss criteria, the methods of their calculation and their application to real economic and technical questions. It also outlines strategies for determining optimal losses based on statistical and probability methods. The results of the study serve to increase the effectiveness of the optimal loss method and improve decision-making processes. 

References

1. Ahlberg J., Nilson E., Walsh J. Spline theory and "e applications. Moscow, Mir

Publ., 1972. 2. B a h v a l o v N. S. Chislennme metodm, vol. I, Moscow, "Nauka", 1973,

3. B a h v a l o v N. S. Ob optimalnykh otsenkakh velocity skosimosti quadrature

protsessov i metodov integratsii tipa Monte-Carlo na klassnh funktsii [On optimal

estimates of the rate of convergence of quadrature processes and methods of

integration of the Monte-Carlo type on class functions]. "Numerical method of

solving diff. and integral equations and quadrature formulas". Moscow, Nauka, 1964

(5-63-betlar).

4. Berezin I. S., Zhidkov N. P. Metodn vmchisleniy, vol. 1., izd. 3rd. Moscow,

Nauka, 1966.

5. B u s l e n k o N. P. et al. Metodn statisticheskikh ispntanii (metod Monte-Carlo).

Moscow, Fizmatgiz Publ., 1962.

6. V a r g a R. Funktsional'nysh analiz i teoriya approximatsii v chislennom analize

[Functional analysis and the theory of approximation in a chislennom analize].

Moscow, Mir Publ., 1974.

7. V o e v o d i n V. V. Chislenne metodn algebrm. Theory and algorithm. Moscow,

Nauka Publ., 1966.

8. G e l f o n d A. O. Calculus of finite differences, 3rd correction. Ed. Moscow,

Nauka Publ., 1967.

9. Goncharov V. L. Teoriya interpolirovaniya i approximation funktsii [Theory of

interpolation and approximation of functions]. Moscow, Gostekhizdat Publ., 1954.

10. Daugavet I. K. Vvedenie v teoriyu approximations funktsii [Introduction to the

theory of approximations of functions]. Leningrad State University, Leningrad, 1977.

Published

2025-05-19

How to Cite

OPTIMAL LOSS METHOD. (2025). ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 69(6), 274-282. https://scientific-jl.com/obr/article/view/14574