A HIROTA BILINEAR METHOD FOR A COMPLEX PERTURBED MODIfiED KORTEWEG-DE VRIES EQUATION

##article.authors##

  • Sayyora Rajabova Shokirboyevna ##default.groups.name.author##

##semicolon##

soliton solution, Schrodinger-Hirota equation, nonlinear equations, Hirota direct method.

##article.abstract##

In this paper by using Hirota direct method, the one-soliton solution of perturbed modified Korteweg-de Vries equation mKdV are studied. We have shown the evolution of the one-soliton solutions. 

##submission.citations##

1. M.J. Ablowitz, H. Segur H. Solitons and Inverse Scattering Transform, SIAM,

Philadelphia,1981.

2. W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60,

pp. 650–654, 1992.

3. W. Malfliet, W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution

and waveequations, Phys. Scr., 54, pp. 563–568, 1996. 4. A.M. Wazwaz, The tanh method for travelling wave solutions of nonlinear

equations, Appl.Math. Comput., 154(3), pp. 713–723, 2004.

5. S.A. El-Wakil, M.A. Abdou, New exact travelling wave solutions using modified

extended tanh-function method, Chaos Solitons Fractals, 31(4), pp. 840–852, 2007.

6. E. Fan, Extended tanh-function method and its applications to nonlinear equations,

Phys. Lett. A, 277(4–5), pp. 212–218, 2000.

7. A.M. Wazwaz, The extended tanh method for abundant solitary wave solutions of

nonlinear wave equations, Appl. Math. Comput., 187(2), pp. 1131–1142, 2007.

8. A.M. Wazwaz, Exact solutions to the double sinh-gordon equation by the tanh

method and a variable separated ODE method, Comput. Math. Appl., 50(10–11), pp.

1685–1696, 2005.

9. A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math.

Comput. Modelling, 40, pp. 499–508, 2004.

10. C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224(1–2), pp.

77–84, 1996.

11. E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A, 246,

pp. 403–406, 1998.

12. M.L. Wang, Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A,

213(5–6), pp. 279–287, 1996.

13. C.Q. Dai, J.F. Zhang, Jacobian elliptic function method for nonlinear differential

difference equations, Chaos Solitons Fractals, 27, pp. 1042–1049, 2006.

14. E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type

nonlinear equations, Phys. Lett. A, 305, pp. 383–392, 2002.

15. S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and

periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289(1–2), pp. 69

74, 2001.

16. X.Q. Zhao, H.Y. Zhi, H.Q. Zhang, Improved Jacobi-function method with

symbolic computation to construct new double-periodic solutions for the generalized

Ito system, Chaos Solitons Fractals, 28, pp. 112–126, 2006. 17. M.A. Abdou, The extended F -expansion method and its application for a class of

nonlinear evolution equations, Chaos Solitons Fractals, 31, pp. 95–104, 2007.

18. Y.J. Ren, H.Q. Zhang, A generalized F -expansion method to find abundant

families of Jacobi elliptic function solutions of the (2 + 1)-dimensional Nizhnik

Novikov–Veselov equation,

Chaos Solitons Fractals, 27, pp. 959–979, 2006.

19. J.L. Zhang, M.L. Wang, Y.M. Wang, Z.D. Fang, The improved F -expansion

method and its applications, Phys. Lett. A, 350(1–2), pp. 103–109, 2006.

20. J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos

Solitons Fractals, 30, pp. 700–708, 2006.

21. H. Aminikhah, H. Moosaei, M. Hajipour, Exact solutions for nonlinear partial

differential equations via Exp-function method, Numer. Methods Partial Differ.

Equations, 26(6), pp. 1427–1433, 2009.

22. Z.Y. Zhang, New exact traveling wave solutions for the nonlinear Klein–Gordon

equation, Turk. J. Phys., 32, pp. 235–240, 2008.

23. M.L. Wang, J.L. Zhang, X.Z. Li, The (G’/G)-expansion method and travelling

wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett.

A, 372, pp. 417–423, 2008.

24. S. Zhang, J.L. Tong, W. Wang, A generalized (G’/G)-expansion method for the

mKdV equation with variable coefficients, Phys. Lett. A, 372, pp. 2254–2257, 2008

25. X.B. Hu, W.X. Ma, Phys. Lett. A 293 (2002) 161–165

26. Y.J. Zhang, C.Y. Yang, W.T. Yu, M.L. Liu, G.L. Ma, W.J. Liu, Opt. Quantum

Electron.50 (2018) 295.

27. C.Y. Yang, W.Y. Li, W.T. Yu, M.L. Liu, Y.J. Zhang, G.M. Ma, W.J. Liu, Nonlinear

Dyn. 92 (2018) 203–213.

28. Y.Y. Wang, C.Q. Dai, Y.Q. Xu, J. Zheng, Y. Fan, Nonlinear Dyn. 92 (2018) 1261

1269.29. A.A. Reyimberganov, I.D. Rakhimov, Numerical-analytical solutions of the

nonlinear Schrödinger equation. Taurida Journal of Computer Science Theory and

Mathematics, 80-91

30. G.U. Urazboev, A.A. Reyimberganov, I.D. Rakhimov, Numerical solution of the

system of Marchenko integral equations, Uzbek Mathematical Journal 65 (3), pp. 159

165

31. А. Рейимберганов. Ночизиқли Шредингер тенгламаси учун қўлланиладиган

чекли айирмали схемалар, Илм сарчашмалари, 3-7

##submissions.published##

2025-03-05