КЛАССИФИКАЦИЯ ТЕКСТОВ ПО ЭМОЦИОНАЛЬНОЙ ОКРАСКЕ С ИСПОЛЬЗОВАНИЕМ МОДЕЛЕЙ TRANSFORMERS

Authors

  • Ботиралиев Бахтиёр Баходир угли Author

Keywords:

классификация текста, BERT, узбекский язык, эмоции, глубокое обучение, Transformers, анализ текста.

Abstract

В статье рассматривается задача классификации эмоциональной окраски текстов с помощью преобученной модели BERT (с 
использованием тахрирчи-модели для узбекского языка). Реализована система обучения и оценки модели с логированием использования ресурсов памяти. Результаты показывают высокую точность классификации эмоций в многоклассовой среде.

References

1.

Joshi, P., Santy, S., Budhiraja, A., Bali, K., & Choudhury, M. (2020). The

state and fate of linguistic diversity and inclusion in the NLP world. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics, 6282-6293.

2.

Mohammad, S. M. (2022). Practical and ethical considerations in the effective

use of emotion and sentiment lexicons. In Proceedings of the Thirteenth Language

Resources and Evaluation Conference, 1675-1684.

3.

Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017). Current state of text

sentiment analysis from opinion to emotion mining. ACM Computing Surveys, 50(2),

1-33.

4.

Strapparava, C., & Valitutti, A. (2004). WordNet-Affect: an affective

extension of WordNet. In Proceedings of the 4th International Conference on Language

Resources and Evaluation, 1083-1086.

5.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis.

Foundations and Trends in Information Retrieval, 2(1-2), 1-135.

6.

Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis:

A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

8(4), e1253.

7.

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in BERTology:

What we know about how BERT works. Transactions of the Association for

Computational Linguistics, 8, 842-866.

8.

Kuriyozov, E., Matlatipov, S., & Alonso, P. (2023). Natural language

processing for low-resource Turkic languages: A comprehensive survey. ACM

Computing Surveys, 55(12), 1-38.9.

Matlatipov, G., & Vetulani, Z. (2022). Building language resources for Uzbek

natural language processing. In Proceedings of the International Conference on NLP

Applications for Turkic Languages, 47-55.

10.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre

training of deep bidirectional transformers for language understanding. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 4171-4186.

11.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G.,

Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., & Stoyanov, V. (2020). Unsupervised

cross-lingual representation learning at scale. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, 8440-8451.

12.

Madrahimov, B., Absalomov, L., & Khodjaev, S. (2023). Tahririchi: Pre

trained transformer models for Uzbek language. In Proceedings of the 3rd Workshop

on NLP for Turkic Languages, 112-121.

13.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre

training of deep bidirectional transformers for language understanding. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 4171-4186.

14.

Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune BERT for

text classification? In China National Conference on Chinese Computational

Linguistics, 194-206.

15.

Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In R.

Plutchik & H. Kellerman (Eds.), Emotion: Theory, Research, and Experience, 1, 3-33.

16.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational

and Psychological Measurement, 20(1), 37-46.

17.

Ekman, P. (2016). What scientists who study emotion agree about.

Perspectives on Psychological Science, 11(1), 31-34.18.

Abdurahmonova, N., & Tulakov, U. (2022). Corpus linguistics in Uzbek

language: Current state and perspectives. Journal of Turkic Language Processing, 7(3),

145-159.

19.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT

pretraining approach. arXiv preprint arXiv:1907.11692.

20.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V.

(2019). XLNet: Generalized autoregressive pretraining for language understanding. In

Advances in Neural Information Processing Systems, 5753-5763.

21.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled

version of BERT: smaller, faster, cheaper and lighter. arXiv preprint

arXiv:1910.01108.

22.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., & Kumar, R.

(2019). Predicting the type and target of offensive posts in social media. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 1415-1420.

23.

Scherer, K. R., & Wallbott, H. G. (1994). Evidence for universality and

cultural variation of differential emotion response patterning. Journal of Personality

and Social Psychology, 66(2), 310-328.

24.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &

Zettlemoyer, L. (2018). Deep contextualized word representations. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 2227-2237.

25.

Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word-emotion

association lexicon. Computational Intelligence, 29(3), 436-465.

26.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2018).

Advances in pre-training distributed word representations. In Proceedings of the 11th

International Conference on Language Resources and Evaluation, 52-55. 27.

Alimova, I., & Tuychiev, G. (2022). Emotion detection in Uzbek social media

texts using transformer-based models. In Proceedings of the 4th International

Conference on NLP Applications for Turkic Languages, 78-86.

28.

Akhmedova, D., & Khodjaev, J. (2023). Transfer learning for sentiment

analysis in low-resource Uzbek language. Journal of Natural Language Processing,

15(2), 87-103.

29.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9(8), 1735-1780.

30.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,

P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C.,

Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., ... & Rush, A. (2020). Transformers:

State-of-the-art natural language processing. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing: System Demonstrations, 38

45.

Published

2025-04-19

How to Cite

КЛАССИФИКАЦИЯ ТЕКСТОВ ПО ЭМОЦИОНАЛЬНОЙ ОКРАСКЕ С ИСПОЛЬЗОВАНИЕМ МОДЕЛЕЙ TRANSFORMERS . (2025). ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 67(4), 268-287. https://scientific-jl.com/obr/article/view/9410