ZAMONAVIY ALOQA TEXNOLOGIYALARI VA ULARNING SOG’LIQ UCHUN OQIBATLARI

Авторы

  • Toshmatova G.A Автор
  • Erkinov I.A Автор
  • Mirsagatova M.R Автор

Ключевые слова:

5G tarmoqlari, elektromagnit maydonlar (EMF), genotoksiklik, hujayra proliferatsiyasi, gen ifodasi, hujayra signalizatsiyasi, millimetr to‘lqinlar, dozimetriya, pulsatsiyali signallar, ICNIRP standartlari, inson salomatligi

Аннотация

Beshinchi avlod (5G) simsiz aloqa tarmoqlari yuqori tezlikdagi ma'lumot uzatish va  past kechikish kabi innovatsion xizmatlarni ta'minlashda muhim o‘rin tutmoqda. Biroq, 6 GHz dan yuqori chastotalardagi elektromagnit maydonlarning 
(EMF) inson salomatligiga ta'siri haqidagi savollar dolzarb bo‘lib qolmoqda. Ushbu maqola 23 eksperimental tadqiqot natijalarini tahlil qilib, 5G chastotalarining genotoksiklik, hujayra proliferatsiyasi, gen ifodasi va hujayra signalizatsiyasiga ta'sirini ko‘rib chiqadi. Tadqiqotlarning 80% past darajadagi EMF ta’sirida (ICNIRP chegaralaridan past) jiddiy biologik effektlar aniqlamadi (p > 0.05), ammo 20% 

Библиографические ссылки

1.

5G Deployment: State of Play in Europe, USA and Asia. (2019). Policy

Department for Economic, Scientific and Quality of Life Policies, European

Parliament.

2.

Di Ciaula, A. (2018). Towards 5G communication systems: Are there health

implications? International Journal of Hygiene and Environmental Health, 221(3),

367–375.

3.

Negreiro, M. (2017). Towards a European gigabit society: Connectivity targets

and 5G. EPRS, European Parliament.

4.

Russel, C. (2018). 5G wireless telecommunications expansion: Public health

and environmental implications. Environmental Research, 165, 484–495.

5.

Simko, M., & Mattsson, M.-O. (2019). 5G Wireless Communication and

Health Effects. International Journal of Environmental Research and Public Health,

16(18), 3406.

6.

Scholz, N. (2019). Mobile phones and health: Where do we stand? EPRS,

European Parliament.

7.

Bush, L. G., et al. (1981). Effects of millimeter-wave radiation on monolayer

cell cultures. Bioelectromagnetics, 2, 151–159.

8.

Chatterjee, I., et al. (2013). Millimeter wave bioeffects at 94 GHz on skeletal

muscle contraction. IEEE Topical Conference on Biomedical Wireless Technologies,

67–69.9.

Chen, Q., et al. (2004). Millimeter wave exposure reverses TPA suppression of

gap junction intercellular communication in HaCaT human keratinocytes.

Bioelectromagnetics, 25, 1–4.

10.

D’Agostino, S., et al. (2018). Extremely high frequency electromagnetic fields

facilitate electrical signal propagation. Scientific Reports, 8, 9299.

11.

Deghoyan, A., et al. (2012). Cell bathing medium as a target for non-thermal

effect of millimeter waves. Electromagnetic Biology and Medicine, 31, 132–142.

12.

Egot-Lemaire, S. J.-P., & Ziskin, M. C. (2011). Dielectric properties of human

skin at an acupuncture point in the 50–75 GHz frequency range. Bioelectromagnetics,

32, 360–366.

13.

Franchini, V., et al. (2018). Genotoxic effects in human fibroblasts exposed to

microwave radiation. Health Physics, 115, 126–139.

14.

Frei, M. R., et al. (1995). Sustained 35-GHz radiofrequency irradiation induces

circulatory failure. Shock, 4, 289–293.

15.

Gapeyev, A. B., et al. (2011). The role of fatty acids in anti-inflammatory

effects of low-intensity extremely high-frequency electromagnetic radiation.

Bioelectromagnetics, 32, 388–395.

16.

Jauchem, J. R., Ryan, K. L., & Walters, T. J. (2016). Pathophysiological

alterations induced by sustained 35-GHz radio-frequency energy heating. Journal of

Basic and Clinical Physiology and Pharmacology, 27, 79–89.

17.

Kojima, M., et al. (2009). Acute ocular injuries caused by 60-GHz millimeter

wave exposure. Health Physics, 97, 212–218.

18.

Alekseev, S. I., et al. (1997). Millimeter waves thermally alter the firing rate of

the Lymnaea pacemaker neuron. Bioelectromagnetics, 18, 89–98.

19.

Kojima, M., et al. (2018). Ocular effects of exposure to 40, 75, and 95 GHz

millimeter waves. Journal of Infrared, Millimeter, and Terahertz Waves, 39, 912–925.

20.

Korenstein-Ilan, A., et al. (2008). Terahertz radiation increases genomic

instability in human lymphocytes. Radiation Research, 170, 224–234.21.

Koschnitzke, C., et al. (1983). A non-thermal effect of millimeter wave

radiation on the puffing of giant chromosomes. Zeitschrift für Naturforschung C, 38,

883–886.

22.

Koyama, S., et al. (2016). Effects of long-term exposure to 60 GHz millimeter

wavelength radiation on the genotoxicity and heat shock protein (HSP) expression of

cells derived from human eye. International Journal of Environmental Research and

Public Health, 13, 802.

23.

Kues, H. A., et al. (1999). Absence of ocular effects after either single or

repeated exposure to 10 mW/cm² from a 60 GHz CW source. Bioelectromagnetics, 20,

463–473.

24.

Salomova, F. I., Jumakulovich, E. N., & Toshmatova, G. A. (2022). Hygienic

Basis for the Use of Specialized Food for Alimental Prevention of Mastopathy. Journal

of Pharmaceutical Negative Results, 13.

25.

Guzal, T., Mavluda, M., & Inomjon, I. (2021). Modern approaches to

rationalization of mealing of urban and rural school children in Uzbekistan.

Опубликован

2025-05-24

Как цитировать

ZAMONAVIY ALOQA TEXNOLOGIYALARI VA ULARNING SOG’LIQ UCHUN OQIBATLARI . (2025). ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 70(1), 421-430. https://scientific-jl.com/obr/article/view/15939