MITIGATION OF DDOS ATTACKS ON WEB APPLICATIONS USING ADAPTIVE RATE-LIMITING AND ALGORITHMIC FILTERING TECHNIQUES

Авторы

  • To‘rabekova Shirin Xaitvoy qizi Автор

Ключевые слова:

DDoS attacks, web application security, adaptive rate-limiting, algorithmic filtering, machine learning, traffic analysis, heuristic detection, real time mitigation, cybersecurity, application-layer defense.

Аннотация

This paper presents a hybrid approach for mitigating 
Distributed Denial of Service (DDoS) attacks on web applications through the 
integration of adaptive rate-limiting and algorithmic filtering techniques. The 
adaptive rate-limiting module dynamically adjusts request thresholds based on 
real-time traffic behavior, while the algorithmic filtering component utilizes 
heuristic rules and machine learning classifiers to detect and block malicious 
traffic. Experimental results show that this combined method significantly 
improves attack detection rates, reduces false positives, and maintains optimal 
server performance under stress. The proposed framework provides a scalable, 
intelligent, and effective defense strategy against modern application-layer DDoS 
attacks.

Библиографические ссылки

1.

Mirkovic J., Reiher P. A taxonomy of DDoS attack and DDoS defense

mechanisms // ACM SIGCOMM Computer Communication Review. – 2004. – Vol.

34, No. 2. – P. 39–53.

2.

Douligeris C., Mitrokotsa A. DDoS attacks and defense mechanisms:

classification and state-of-the-art // Computer Networks. – 2004. – Vol. 44, No. 5. – P.

643–666.

3.

Wang H., Jin C., Shin K.G. Defense against spoofed IP traffic using hop-count

filtering // IEEE/ACM Transactions on Networking. – 2007. – Vol. 15, No. 1. – P. 40

53.

4.

Zargar S.T., Joshi J., Tipper D. A survey of defense mechanisms against

distributed denial of service (DDoS) flooding attacks // IEEE Communications Surveys

& Tutorials. – 2013. – Vol. 15, No. 4. – P. 2046–2069.

5.

Yu S., Zhou W., Doss R., Jia W. Traceback of DDoS attacks using entropy

variations // IEEE Transactions on Parallel and Distributed Systems. – 2011. – Vol. 22,

No. 3. – P. 412–425.

6.

Peng T., Leckie C., Ramamohanarao K. Survey of network-based defense

mechanisms countering the DoS and DDoS problems // ACM Computing Surveys. –

2007. – Vol. 39, No. 1. – Article 3.

7.

Cloudflare. What is rate limiting? – [Elektron resurs]. – Rejim kirish:

https://www.cloudflare.com/learning/ddos/rate-limiting/ (murojaat qilingan sana:

12.06.2025).8.

OWASP Foundation. DDoS Attack Prevention Cheat Sheet – [Elektron resurs]. – Rejim kirish: https://cheatsheetseries.owasp.org/ (murojaat qilingan sana:

12.06.2025).

9.

Hussain A., Heidemann J., Papadopoulos C. A framework for classifying denial

of service attacks // Proceedings of the 2003 conference on Applications, technologies,

architectures, and protocols for computer communications. – ACM, 2003. – P. 99–110.

10.

Mirkovic J., Prier G., Reiher P. Attacking DDoS at the source // IEEE Transactions on

Software Engineering. – 2002. – Vol. 30, No. 9. – P. 761–772.

Опубликован

2025-06-19

Как цитировать

MITIGATION OF DDOS ATTACKS ON WEB APPLICATIONS USING ADAPTIVE RATE-LIMITING AND ALGORITHMIC FILTERING TECHNIQUES. (2025). ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 71(5), 72-79. https://scientific-jl.com/obr/article/view/21665