CHUQUR O‘RGANISHGA ASOSLANGAN HOLDA AQLLI SHAHAR UCHUN AQLLI MUHITNI LOYIHALASH VA REJALASHTIRISH

Авторы

  • G‘ayratov Z.K Автор
  • Xidirov A.M Автор
  • Xadjayev M.S Автор
  • Xiyasova S.R Автор

Ключевые слова:

Aqlli shahar, aqlli muhit, chuqur o‘rganish, sun’iy intellekt, IoT, loyihalash, qaror qabul qilish, rejalashtirish, ma’lumotlarni tahlil qilish, avtomatlashtirilgan boshqaruv.

Аннотация

Ushbu maqolada chuqur o‘rganish (deep learning) 
texnologiyalariga asoslangan holda aqlli shaharlar uchun aqlli muhitni samarali 
loyihalash va rejalashtirish masalalari yoritiladi. Aqlli shahar infratuzilmasida real 
vaqtli monitoring, bashoratlash, resurslarni optimal boshqarish hamda fuqarolar 
xavfsizligi va qulayligi asosiy ustuvor yo‘nalishlardan biri sifatida qaraladi. Shu 
nuqtai nazardan, maqolada chuqur o‘rganish modellari yordamida katta hajmdagi 
ma’lumotlarni tahlil qilish, kontekstga mos qarorlar qabul qilish va tizimning 
adaptivligi kabi jihatlar keng muhokama qilinadi. Loyihalash jarayonida atrof-muhit 
holatini o‘lchash, harakatni aniqlash, transport oqimini boshqarish va energiya 
samaradorligini ta’minlash kabi komponentlar chuqur o‘rganish algoritmlari bilan 
uyg‘unlashtirilgan holda tavsiflanadi. Maqola yakunida aqlli muhitni barpo etishda 
chuqur o‘rganish texnologiyalarining ustunliklari va ularni amaliyotga tatbiq 
qilishdagi dolzarb masalalar xulosa tarzida bayon etiladi. 

Библиографические ссылки

1.

Jabareen, Y. (2013). Planning the resilient city: Concepts and strategies for

coping with climate change and environmental risk. Cities, 31, 220–229.

2.

Macke, J., Casagrande, R. M., Sarate, J. A., & Silva, K. A. (2018). Smart city

and quality of life: Citizens’ perception in a Brazilian case study. Journal of Cleaner

Production, 182, 717–726.

3.

Jegadeesan, S., Azees, M., Kumar, P. M., Manogaran, G., Chilamkurti, N.,

Varatharajan, R., et al. (2019). An efficient anonymous mutual authentication

technique for providing secure communication in mobile cloud computing for smart

city applications. Sustainable Cities and Society, 49, 101522.4.

Ambituuni, A., Amezaga, J., & Emeseh, E. (2014). Analysis of safety and

environmental regulations for downstream petroleum industry operations in Nigeria:

Problems and prospects. Environmental Development, 9, 43–60.

5.

Sekaran, K., Meqdad, M. N., Kumar, P., Rajan, S., & Kadry, S. (2020). Smart

agriculture management system using Internet of Things. Telkomnika, 18(3), 1275

1284.

6.

Gomathi, P., Baskar, S., & Shakeel, P. M. (2020). Concurrent service access and

management framework for user-centric future internet of things in smart cities.

Complex & Intelligent Systems. https://doi.org/10.1007/s40747-020-00160-5

7.

Sajjad, M., Nasir, M., Muhammad, K., Khan, S., Jan, Z., Sangaiah, A. K., et al.

(2020). Raspberry Pi assisted face recognition framework for enhanced law

enforcement services in smart cities. Future Generation Computer Systems, 108, 995

1007.

8.

Mohanty, S. P., Choppali, U., & Kougianos, E. (2016). Everything you wanted

to know about smart cities: The internet of things is the backbone. IEEE Consumer

Electronics Magazine, 5(3), 60–70.

9.

Bhattacharya, S., Somayaji, S. R. K., Gadekallu, T. R., Alazab, M., &

Maddikunta, P. K. R. (2020). A review on deep learning for future smart cities. Internet

Technology Letters, e187.

10.

Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., Oliveira, A.,

et al. (2011). Berlin, Heidelberg: Springer, pp. 431–446.

11.

Binz, C., Truffer, B., Li, L., Shi, Y., & Lu, Y. (2012). Conceptualizing

leapfrogging with spatially coupled innovation systems: The case of onsite wastewater

treatment in China. Technological Forecasting and Social Change, 79(1), 155–171.

12.

Kumar, P. M., Gandhi, U., Varatharajan, R., Manogaran, G., Jidhesh, R., &

Vadivel, T. (2019). Intelligent face recognition and navigation system using neural

learning for smart security in Internet of Things. Cluster Computing, 22(4), 7733

7744.13.

Dieleman, H. (2013). Organizational learning for resilient cities, through

realizing eco-cultural innovations. Journal of Cleaner Production, 50, 171–180.

14.

Kumar, N., Vasilakos, A. V., & Rodrigues, J. J. (2017). A multi-tenant cloud

based DC nano grid for self-sustained smart buildings in smart cities. IEEE

Communications Magazine, 55(3), 14–21.

15.

Van Dalen, A. (2012). The algorithms behind the headlines: How machine

written news redefines the core skills of human journalists. Journalism Practice, 6(5

6), 648–658.

16.

Lorek, S., & Spangenberg, J. H. (2014). Sustainable consumption within a

sustainable economy–beyond green growth and green economies. Journal of Cleaner

Production, 63, 33–44.

17.

Hanjra, M. A., Blackwell, J., Carr, G., Zhang, F., & Jackson, T. M. (2012).

Wastewater irrigation and environmental health: Implications for water governance

and public policy. International Journal of Hygiene and Environmental Health, 215(3),

255–269.

18.

Bibri, S. E. (2019). The anatomy of the data-driven smart sustainable city:

Instrumentation, datafication, computerization and related applications. Journal of Big

Data, 6(1), 59.

19.

Wang, S. P., Lin, L. C., Lee, C. M., & Wu, S. C. (2011). Effectiveness of a self

care program in improving symptom distress and quality of life in congestive heart

failure patients: A preliminary study. Journal of Nursing Research, 19(4), 257–266.

Опубликован

2025-06-19

Как цитировать

CHUQUR O‘RGANISHGA ASOSLANGAN HOLDA AQLLI SHAHAR UCHUN AQLLI MUHITNI LOYIHALASH VA REJALASHTIRISH . (2025). ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 71(5), 365-373. https://scientific-jl.com/obr/article/view/21851