KOMPYUTER LINGVISTIKASI VA SUN’IY INTELLEKT. ZAMONAVIY TIL TEXNOLOGIYALARINING KELAJAGI
##semicolon##
kompyuter lingvistikasi, sun’iy intellekt, tabiiy tilni qayta ishlash, neyron tarmoqlar, mashinaviy tarjima, semantik tahlil, chatbotlar.##article.abstract##
Ushbu maqolada kompyuter lingvistikasi va sun’iy intellekt texnologiyalarining tabiiy tilni qayta ishlash (NLP) jarayonlaridagi o‘rni va rivojlanish tendensiyalari tahlil qilinadi1. Tadqiqotning asosiy maqsadi – sun’iy intellekt asosida shakllangan til texnologiyalarining samaradorligini baholash va ularning lingvistik jarayonlarni avtomatlashtirishdagi ahamiyatini aniqlashdan iborat. Ishda neyron
tarmoqlarga asoslangan mashinaviy tarjima, nutqni avtomatik tanish, matnni semantik tahlil qilish va chatbot texnologiyalaridan foydalanishning nazariy hamda amaliy ihatlari o‘rganiladi2. Tadqiqot jarayonida statistik va transformer modellarining
lingvistik tahlilga ta’siri ko‘rib chiqilib, NLP tizimlarining ustunliklari hamda cheklovlari aniqlanadi.
##submission.citations##
1. Jurafsky, D., & Martin, J. H. (2021). Speech and Language Processing. Pearson.
2. Goldberg, Y. (2017). Neural Network Methods for Natural Language Processing.
Morgan & Claypool Publishers.
3. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &
Polosukhin, I. (2017). “Attention Is All You Need”. Advances in Neural Information
Processing Systems (NeurIPS), 30.
4. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding”. Proceedings of
NAACL-HLT 2019.
5. Hochreiter, S., & Schmidhuber, J. (1997). “Long Short-Term Memory”. Neural
Computation, 9(8), 1735-1780.
6. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press.7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).
“Distributed Representations of Words and Phrases and Their Compositionality”.
Advances in Neural Information Processing Systems (NeurIPS), 26.
8. Pennington, J., Socher, R., & Manning, C. D. (2014). "GloVe: Global Vectors for
Word Representation". Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 1532-1543.
9. Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., & Mercer, R. L. (1993). "The
Mathematics of Statistical Machine Translation: Parameter Estimation".
Computational Linguistics, 19(2), 263-311.
10. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).
"Language Models are Few-Shot Learners". OpenAI Research Paper.