SUN'IY INTELLEKTNING SOG'LIQNI SAQLASHGA TA'SIRI

##article.authors##

  • Abduqodirov Nuriddin ##default.groups.name.author##

##semicolon##

Sun'iy intellekt (SI), sog'liqni saqlash texnologiyalari, diagnostika vositalari, shaxsiylashtirilgan tibbiyot,bashoratli tahlil, jarrohlikda SI

##article.abstract##

Sun'iy intellekt (SI) diagnostika aniqligini oshirish, davolash natijalarini yaxshilash, operatsion xarajatlarni kamaytirish va sog'liqni saqlash xizmatlaridan foydalanish imkoniyatini oshirish orqali sog'liqni saqlash sohasini jadal o'zgartirmoqda. Ushbu maqola SI-ning sog'liqni saqlashda turli xil qo'llanilishini, shu jumladan diagnostika vositalari, shaxsiy tibbiyot, bemorlarni monitoring qilish va robot jarrohliklarini o'rganadi. Maqolada, shuningdek, SI-ning samaradorlikni oshirish, xarajatlarni pasaytirish va qulaylikni oshirish kabi muhim afzalliklari muhokama qilinadi, shu bilan birga ma'lumotlar maxfiyligi masalalari, axloqiy masalalar va SI-ni mavjud sog'liqni saqlash tizimlariga integratsiyalashuvi kabi asosiy muammolarni hal qiladi. SI texnologiyasi rivojlanishda davom etar ekan, uning butun dunyo bo'ylab sog'liqni saqlash tizimlarida inqilob qilish salohiyati juda katta, ammo uni muvaffaqiyatli va axloqiy amalga oshirishni ta'minlash uchun jiddiy to'siqlarni engish kerak. Maqola SI-ga asoslangan sog'liqni saqlash innovatsiyalarining 
kelajakdagi tendentsiyalarini, shu jumladan SIning dori-darmonlarni kashf etish, bashoratli tibbiyot va ruhiy salomatlikni saqlashdagi ro’lini ta'kidlab o'tadi.

##submission.citations##

1. Topol, E. J. (2019). Deep Medicine: How Artificial Intelligence Can Make

Healthcare Human Again. Basic Books.

2. Esteva, A., Kuprel, B., Novoa, R. A., et al. (2017). Dermatologist-level

classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.

3. Obermeyer, Z., Powers, B. W., Vogeli, C., & Mullainathan, S. (2019).

Dissecting racial bias in an algorithm used to manage the health of populations.

Science, 366(6464), 447-453.

4. Choi, E., Bahadori, M. T., Schuetz, A., et al. (2016). Doctor AI: Predicting

clinical events via recurrent neural networks. Journal of Machine Learning Research,

17(1), 1-16.

5. Jiang, F., Jiang, Y., Zhi, H., et al. (2017). Artificial intelligence in healthcare:

Past, present, and future. Seminars in Cancer Biology, 54, 1-11.

6. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in

healthcare. Future Healthcare Journal, 6(2), 94-98.7. Rajpurkar, P., Irvin, J., Zin, L., et al. (2017). Deep learning for chest radiograph

diagnosis: A retrospective comparison of the CheXNet algorithm to practicing

radiologists. PLOS Medicine, 14(11), e1002686.

8. Liu, Y., Chen, P. C., Krause, J., & Peng, L. (2019). How AI can enhance patient

care and reduce errors. Journal of the American Medical Association (JAMA), 322(4),

332-333.

9. Vincent, K., & Sampson, R. (2020). AI and the future of healthcare: Enhancing

diagnosis and patient outcomes. The Lancet Digital Health, 2(3), e141-e150.

##submissions.published##

2025-03-20