SUN'IY INTELEKTDAN PEDAGOGIKADA FOYDALANGAN HOLDA KOMPYUTER TIZIMLARI VA TARMOQLARINING KIBERXAVSIZLIGI TA'MINLASH ALGORITMLARINI ISHLAB CHIQISH
Keywords:
Kalit So'zlar: Sun'iy intellekt, kiberxavfsizlik, pedagogika, algoritmlar, kompyuter tizimlari, kompyuter tarmoqlari, kiberhujumlar, ta'lim, xavfsizlikni ta'minlash.Abstract
Annotatsiya: Ushbu maqola sun'iy intellekt (SI) texnologiyalaridan pedagogik
usullar bilan uyg'unlashtirilgan holda kompyuter tizimlari va tarmoqlarining
kiberxavfsizligini ta'minlash uchun yangi algoritmlarni ishlab chiqishga
bag'ishlangan. Maqolada kiberxavfsizlik sohasidagi mavjud muammolar va ularni hal
etishda SIning o'rni tahlil qilinadi. Shuningdek, ta'lim jarayonida SI algoritmlarini
qo'llash orqali kiberxavfsizlik bo'yicha bilim va ko'nikmalarni oshirish imkoniyatlari
ko'rib chiqiladi. Maqolada ishlab chiqilgan yangi algoritmlarning arxitekturasi,
ishlash mexanizmi va ularni amaliyotga tatbiq etish yo'llari batafsil yoritilgan.
Algoritmlarning samaradorligi turli xil kiberhujumlar simulyatsiyasi orqali
baholanadi va olingan natijalar muhokama qilinadi.
References
1. Национальная стратегия развития информационного общества Республики
Узбекистан на 2019-2021 годы. (O'zbekiston Respublikasi Prezidentining 2018
yil 21 noyabrdagi PQ-4007-son Qarori).
2. Florêncio, D., & Miller, S. P. (2010). Security and human behavior: Designing
secure systems that people can use. Foundations and Trends® in Privacy and
Security, 3(1-2), 1-112.
3. Романюк, А. Н., & Тимошенко, А. В. (2017). Современные киберугрозы и
методы борьбы с ними. Информационная безопасность и технологии, (4), 72-
77.
4. Buczak, A. L., & Guvenen, O. (2016). A survey of data mining and machine
learning methods for cyber security intrusion detection. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 6(4), 278-310.
5. Furnell, S. M. (2017). Cyber security and human factors: Considerations for insider
threats. Information Security Technical Report, 22(1), 39-48.
6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
7. Axelsson, S. (2000). Intrusion detection systems: A survey and
taxonomy. Technical report, Department of Computer Science, Chalmers
University of Technology.
8. Chandrasekhar, P., & Raghuveer, K. (2019). A survey on machine learning
techniques for intrusion detection systems. International Journal of Recent
Technology and Engineering (IJRTE), 8(2S11), 233-237.
9. Gibert, D., Mateu, J., & Planes, J. (2016). Using data mining techniques for malware
analysis. Journal of Computer Virology and Hacking Techniques, 12(1), 1-12.
10. Alzahrani, A. I., & জানান, М. (2020). Deep learning approaches for malware
analysis: A survey. Journal of Information Security and Applications, 50, 102415.
11. А. А., & Петров, В. П. (2018). Методы и средства обнаружения фишинговых
атак. Информационные технологии, (11), 64-69.
12. Rao, R. S., & Pais, A. R. (2019). Detection of phishing attacks using natural
language processing and machine learning. International Journal of Information
Security and Privacy (IJISP), 13(1), 47-64.
13. Li, Z., Zou, Y., Jin, S., & Wang, Z. (2020). A survey of software vulnerability
detection based on machine learning. IEEE Access, 8, 59978-59994.
14. С. Б., & Реагирование, И. (2019). Системы автоматизированного реагирования
на инциденты информационной безопасности. Вопросы кибербезопасности,
(3), 2-11.
15. Anderson, R. (2008). Security engineering: A guide to building dependable
distributed systems. John Wiley & Sons.
16. Siponen, M., & Vance, D. P. (2014). Information security counter measures:
Human, technical, and organizational perspectives. Communications of the
Association for Information Systems, 34(1), 10.
17. Gollmann, D. (2010). Computer security. John Wiley & Sons.
18. Шувалов, В. П., & Иванов, С. С. (2016). Формирование культуры
информационной безопасности у пользователей. Вестник Южно-Уральского
государственного университета. Серия «Компьютерные технологии,
управление, радиоэлектроника», 16(1), 103-108.
19. Bulgurcu, B., Cavusoglu, H., & Benbasat, I. (2010). Information security policy
compliance: An investigation of antecedents and consequences. Computers &
Security, 29(8), 826-833.
20. Hwang, G. J., Xie, H., Zeng, Q., & Abelson, S. (2013). Investigating the impact of
a mobile learning environment on students’ learning achievements and
motivations. International Review of Research in Open and Distributed
Learning, 14(5), 162-187.