PARABOLIK TENGLAMALAR UCHUN AYRIMALI SXEMALAR
Keywords:
Kalit so‘zlar: Parabolik tenglama, ayrimali sxema, issiqlik o'tkazuvchanlik, sonli usul, nazariy yechim, C# dasturlash, algoritm, stablillik, konvergentlik, modellashtirish.Abstract
Annonatsiya. Ushbu maqolada parabolik turdagi differensial tenglamalarning
sonli yechimlarini topishda qo'llaniladigan ayrimali usullar va ularning nazariy
asoslari, amaliy dasturiy realizatsiyasi yoritilgan. Ayrimali sxemalar yordamida
issiqlik o'tkazuvchanlik masalasini yechish algoritmi bosqichma-bosqich tahlil
qilinadi. C# dasturlash tilida yechimni kompyuterda modellashtirish imkoniyatlari ham
ko‘rib chiqiladi. Maqola fizika-matematikaviy jarayonlarning sonli
modellashtirilishiga qiziquvchilar uchun foydali bo‘ladi.
References
Foydalanilgan adabiyotlar
1. Самарский А. А., Гулин А. В. Численные методы. — Москва: Наука, 1989.
2. Калиткин Н. Н. Численные методы. — Москва: Наука, 1978.
3. Morton K. W., Mayers D. F. Numerical Solution of Partial Differential Equations:
An Introduction. — Cambridge University Press, 2005.
4. Strikwerda J. C. Finite Difference Schemes and Partial Differential Equations. —
SIAM, 2004.
5. Smith G. D. Numerical Solution of Partial Differential Equations: Finite Difference
Methods. — Oxford University Press, 1985.
6. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. Numerical Recipes:
The Art of Scientific Computing. — Cambridge University Press, 2007.
7. Ilyasov A. X., Murodov O. A. Sonli usullar. — Toshkent: O‘zMU nashriyoti, 2019.
8. Mamatqulov U. N., Ochildiyev S. A. Differensial tenglamalarni sonli yechish
usullari. — Toshkent: Fan va texnologiyalar nashriyoti, 2018.
9. Shamsiev A. I., Raxmatov J. T. Kompyuterda matematik modellashtirish. —
Farg‘ona: FarDU nashriyoti, 2021.
10. Isaacson E., Keller H. B. Analysis of Numerical Methods. — Dover Publications,
1994.
11. Ames W. F. Numerical Methods for Partial Differential Equations. — Academic
Press, 1992.
12. Tikhonov A. N., Samarskii A. A. Equations of Mathematical Physics. — Dover
Publications, 2011.
13. Ершов С. В. Разностные методы решения краевых задач. — Санкт-
Петербург: Питер, 2004.
14. LeVeque R. J. Finite Difference Methods for Ordinary and Partial Differential
Equations. — SIAM, 2007.
15. Seyfullayev A. B. Amaliy matematik fizik tenglamalar. — Toshkent: O‘zbekiston,
2001.