MA’LUMOTLARNI DASTLABKI ISHLOV BERISH JARAYONLARI

Авторы

  • To‘xtasinov Adxamjon Ilxomjon o‘g‘li Автор
  • Sodiqov Vali Salim o‘g‘li Автор

Ключевые слова:

Kalit so‘zlar: Ma’lumotlarni dastlabki ishlov berish, ma’lumotlarni tozalash, normalizatsiya, xususiyat muhandisligi, Scikit-learn, Pandas, mashinaviy o‘qitish, ma’lumotlar tahlili.

Аннотация

Annotatsiya:  Mazkur  maqolada  ma’lumotlarni  dastlabki  ishlov  berish 
(preprocessing)  bosqichlari  va  ularning  ma’lumotlar  tahlili  hamda  mashinaviy 
o‘qitishdagi ahamiyati yoritilgan. Tadqiqot davomida tozalash, transformatsiya qilish, 
xususiyat  muhandisligi,  xususiyat  tanlash  va  ma’lumotlarni  ajratish  kabi  asosiy 
jarayonlar  chuqur  o‘rganildi.  Har  bir  bosqich  Python  dasturlash  tilidagi  Pandas, 
NumPy va Scikit-learn kutubxonalari yordamida amaliy jihatdan tasvirlandi. Maqolada 
nazariy yondashuvlar real dunyo misollari bilan boyitilib, ma’lumotlar sifatini oshirish 
va modellashtirish uchun qulay muhit yaratish usullari tahlil qilindi. Tadqiqot natijalari 
ma’lumotlar  bilan  ishlaydigan  mutaxassislar  uchun  foydali  uslubiy  ko‘rsatmalarni 
taqdim etadi. 

Библиографические ссылки

Foydalanilgan adabiyotlar

1. Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd

ed.). O’Reilly Media.

2. VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for

Working with Data. O’Reilly Media.

3. McKinney, W. (2018). Python for Data Analysis: Data Wrangling with Pandas,

NumPy, and IPython (2nd ed.). O’Reilly Media.

4. Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd

ed.). Morgan Kaufmann.

5. Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer.

6. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ...

& Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research, 12, 2825–2830.

7. Zhang, Z. (2016). Missing data imputation: Focusing on single imputation. Annals

of Translational Medicine, 4(1), 9. https://doi.org/10.3978/j.issn.2305-

5839.2015.12.38

8. Wang, J., & Su, X. (2011). Handling missing data in social science research with

SAS. Charlotte, NC: Information Age Publishing.

9. Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Data Preprocessing for

Supervised Learning. International Journal of Computer Science, 1(2), 111–117.

10. Jain, A., & Chandrasekaran, V. (2020). Effective Data Preprocessing Techniques

for Machine Learning Models. International Journal of Computer Applications,

975, 8887.

Опубликован

2025-06-09

Как цитировать

To‘xtasinov Adxamjon Ilxomjon o‘g‘li, & Sodiqov Vali Salim o‘g‘li. (2025). MA’LUMOTLARNI DASTLABKI ISHLOV BERISH JARAYONLARI . TADQIQOTLAR, 63(6), 294-299. https://scientific-jl.com/tad/article/view/19391