MA’LUMOTLARNI DASTLABKI ISHLOV BERISH JARAYONLARI
Keywords:
Kalit so‘zlar: Ma’lumotlarni dastlabki ishlov berish, ma’lumotlarni tozalash, normalizatsiya, xususiyat muhandisligi, Scikit-learn, Pandas, mashinaviy o‘qitish, ma’lumotlar tahlili.Abstract
Annotatsiya: Mazkur maqolada ma’lumotlarni dastlabki ishlov berish
(preprocessing) bosqichlari va ularning ma’lumotlar tahlili hamda mashinaviy
o‘qitishdagi ahamiyati yoritilgan. Tadqiqot davomida tozalash, transformatsiya qilish,
xususiyat muhandisligi, xususiyat tanlash va ma’lumotlarni ajratish kabi asosiy
jarayonlar chuqur o‘rganildi. Har bir bosqich Python dasturlash tilidagi Pandas,
NumPy va Scikit-learn kutubxonalari yordamida amaliy jihatdan tasvirlandi. Maqolada
nazariy yondashuvlar real dunyo misollari bilan boyitilib, ma’lumotlar sifatini oshirish
va modellashtirish uchun qulay muhit yaratish usullari tahlil qilindi. Tadqiqot natijalari
ma’lumotlar bilan ishlaydigan mutaxassislar uchun foydali uslubiy ko‘rsatmalarni
taqdim etadi.
References
Foydalanilgan adabiyotlar
1. Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd
ed.). O’Reilly Media.
2. VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for
Working with Data. O’Reilly Media.
3. McKinney, W. (2018). Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython (2nd ed.). O’Reilly Media.
4. Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd
ed.). Morgan Kaufmann.
5. Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer.
6. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ...
& Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.
7. Zhang, Z. (2016). Missing data imputation: Focusing on single imputation. Annals
of Translational Medicine, 4(1), 9. https://doi.org/10.3978/j.issn.2305-
5839.2015.12.38
8. Wang, J., & Su, X. (2011). Handling missing data in social science research with
SAS. Charlotte, NC: Information Age Publishing.
9. Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Data Preprocessing for
Supervised Learning. International Journal of Computer Science, 1(2), 111–117.
10. Jain, A., & Chandrasekaran, V. (2020). Effective Data Preprocessing Techniques
for Machine Learning Models. International Journal of Computer Applications,
975, 8887.