PROOF OF MATHEMATICAL FORMULAS USING THE METHOD OF MATHEMATICAL INDUCTION

Authors

  • Sobirova Dinora Umidjon qizi Author

Keywords:

Keywords: Mathematical induction, proof methods, natural numbers, algebraic formulas, mathematics education

Abstract

Abstract:  Mathematical  induction  is  a  fundamental  method  of  proof  in 
mathematics, particularly useful in establishing the validity of formulas and statements 
involving natural numbers. This article explores the principles and logical structure of 
mathematical induction through carefully selected examples and step-by-step analyses. 
By  applying  this  method  to  various  arithmetic  and  algebraic  formulas,  the  study 
demonstrates  how  induction  provides  a  clear  and  rigorous  approach  to  proof 
construction.  

References

References

1. Islomov, A. (2018). Mathematical Induction and Its Applications. Tashkent:

National University of Uzbekistan Publishing.

2. Qodirov, S. (2015). Mathematics: Fundamentals of Abstract and Logical Thinking.

Urgench State University.

3. Isroilov, M. (2019). Mathematical Analysis and Logic. Tashkent: Science and

Technology Publishing.

4. Rosen, K. H. (2012). Discrete Mathematics and Its Applications (7th ed.). McGraw-

Hill Education.

5. Epp, S. S. (2011). Discrete Mathematics with Applications (4th ed.). Cengage

Learning.

6. Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete Mathematics.

Addison-Wesley.

7. Van Dalen, D. (2004). Logic and Structure. Springer-Verlag.

Published

2025-06-10

How to Cite

Sobirova Dinora Umidjon qizi. (2025). PROOF OF MATHEMATICAL FORMULAS USING THE METHOD OF MATHEMATICAL INDUCTION . TADQIQOTLAR, 64(1), 27-29. https://scientific-jl.com/tad/article/view/19626