SUN’IY INTELLEKT SHAROITIDA MA’LUMOTLAR HIMOYASI: TAHDIDLAR VA YECHIMLAR
Keywords:
Kirish so’z. kiberxavfsizlik, ma’lumotlar tahlili, deepfake, aniqlash algoritmlari, shaxsiy ma’lumotlarAbstract
Annotatsiya: Sun’iy intellekt (SI) texnologiyalarining keng tarqalishi kiberxavfsizlik sohasida yangi imkoniyatlar bilan bir qatorda, jiddiy tahdidlarni ham yuzaga keltirmoqda. Ushbu maqolada SI bilan bog‘liq kiberxavfsizlik muammolari chuqur tahlil qilinadi. Jumladan, deepfake texnologiyalarining xavfi, shaxsiy ma’lumotlar bilan bog‘liq hujumlar va differential privacy tamoyili asosidagi himoya mexanizmlari ko‘rib chiqiladi. Maqolada global statistika, real tadqiqotlar va amaliyotda qo‘llanilayotgan texnologik yondashuvlar asosida ushbu muammolarning dolzarbligi va ularni bartaraf etish yo‘llari tahlil qilinadi. Tadqiqot natijalariga ko‘ra, SI asosidagi himoya usullari (masalan, avtomatlashtirilgan tahdid aniqlash, differensial maxfiylik) kiberxavfsizlikni oshirishda katta salohiyatga ega, biroq ularning o‘zi yetarli emas — yuridik va etik me’yorlar bilan birga ishlashi muhim.
References
1. IBM Security. (2023). Cost of a Data Breach Report. https://www.ibm.com/reports/data-breach
2. Dolhansky, B., et al. (2020). The Deepfake Detection Challenge Dataset. arXiv:2006.07397.
3. McKinsey Global Institute. (2020). The Future of Work in Technology. https://www.mckinsey.com
4. Dwork, C. (2006). Differential Privacy. Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP). Springer. https://doi.org/10.1007/11787006_1
5. Federal Trade Commission (FTC). (2023). Consumer Sentinel Network Data Book 2023. https://www.ftc.gov
6. BBC News. (2022). Ukraine war: Deepfake video of President Zelensky circulates online. https://www.bbc.com/news/technology-60780142
7. Kaspersky Lab. (2023). Adaptive Anomaly Detection Overview. https://www.kaspersky.com
8. Apple Inc. (2017). Learning with Privacy at Scale. Apple Machine Learning Journal, 1(8). https://machinelearning.apple.com/research/learning-with-privacy-at-scale
9. IBM Security. (2023). Cost of a Data Breach Report 2023. IBM Corporation. https://www.ibm.com/reports/data-breach
10. Dolhansky, B., Howes, R., Pflaum, B., Baram, N., Roessler, A., & Ferrer, C. C. (2020). The Deepfake Detection Challenge (DFDC) Dataset. arXiv preprint arXiv:2006.07397. https://arxiv.org/abs/2006.07397