FOUR DIMENSIONS OF AUTHENTICITY IN AI LANGUAGE ASSESSMENT

Authors

  • Dilnoza Usmanova Author

Keywords:

Keywords: language assessment, artificial intelligence, authenticity dimensions, TESOL, assessment design

Abstract

This  article  presents  a  detailed  framework  of  four  essential  dimensions  of 
authenticity  in  AI-enhanced  language  assessment:  contextual,  interactional, 
consequential,  and  representational.  For  each  dimension,  we  analyze  current  AI 
capabilities,  identify  limitations,  and  suggest  pathways  for  development.  This 
framework  provides  TESOL  practitioners  with  concrete  criteria  for  evaluating  AI 
assessment tools and offers developers clear guidelines for creating more authentic 
assessment systems. 

References

References

1. Bachman, L. F., & Palmer, A. S. (2010). Language assessment in practice. Oxford

University Press.

2. Chapelle, C. A., & Voss, E. (2016). 20 years of technology and language assessment

in Language Learning & Technology. Language Learning & Technology, 20(2),

116-128.

3. Evanini, K., & Wang, X. (2021). Automated speaking assessment: Recent advances

and future directions. Language Assessment Quarterly, 18(2), 153-169.

4. Ockey, G. J. (2021). An overview of AI and language assessment: Definitions,

applications, and challenges. Language Assessment Quarterly, 18(2), 119-135.

5. Yan, X., Chiu, Y. T., & Li, Z. (2023). Exploring the potential of large language

models for language assessment. Language Testing, 40(2), 306-332.

Published

2025-07-03

How to Cite

Dilnoza Usmanova. (2025). FOUR DIMENSIONS OF AUTHENTICITY IN AI LANGUAGE ASSESSMENT . TADQIQOTLAR, 65(1), 272-275. https://scientific-jl.com/tad/article/view/24092