YANGI BAHOLASH TIZIMINI RAQAMLASHTIRISH: O‘QUVCHI NATIJALARINI SUN’IY INTELLEKT YORDAMIDA TAHLIL QILISH YONDASHUVI

Authors

  • Davlatov Akrom Olimovich Author

Keywords:

Kalit so‘zlar: Raqamlashtirish, sun’iy intellekt, baholash tizimi, o‘quvchi natijalari, ta’lim texnologiyalari, o‘quv jarayoni, tahlil, adaptiv ta’lim.

Abstract

 
Annotatsiya:  Ushbu  maqolada  raqamlashtirilgan  baholash  tizimi  doirasida 
sun’iy intellekt (SI) yordamida o‘quvchi natijalarini samarali tahlil qilishning nazariy 
va  amaliy  jihatlari  yoritilgan.  Raqamli  texnologiyalar  va  SI  algoritmlaridan 
foydalanish  orqali  an’anaviy  baholash  tizimidagi  subyektivlikni  kamaytirish, 
o‘quvchilarning  individual  yutuqlari  va  ehtiyojlarini  aniqlash  imkoniyatlari 
o‘rganiladi.  Maqolada  ilg‘or  xorijiy  tajribalar,  mavjud  tahliliy  vositalar,  ularning 
afzalliklari  va  cheklovlari,  shuningdek,  O‘zbekiston  ta’lim  tizimiga  moslashtirish 
imkoniyatlari  ko‘rib  chiqiladi.  Tadqiqot  natijalari  asosida  raqamli  baholashni  joriy 
etish bo‘yicha aniq tavsiyalar beriladi. 

References

Adabiyotlar.

1. United Nations Transforming Our World: The 2030 Agenda for Sustainable

Development/Department of Economic and Social Affairs. Available online:

https://sdgs.un.org/2030agenda (accessed on 22 May 2021).

2. Janpla, S.; Piriyasurawong, P. The Development of an Intelligent Multilevel Item

Bank Model for the National Evaluation of Undergraduates. Univers. J. Educ. Res.

2020, 8, 4163–4172. [CrossRef]

3. Prendes Espinosa, M.P.; Cerdán Cartagena, F. Tecnologías avanzadas para afrontar

el reto de la innovación educativa. RIED. Rev. Iberoam. Educ. Distancia 2020, 24,

35. [CrossRef]

4. Chai, C.S.; Wang, X.; Xu, C. An extended theory of planned behavior for the

modelling of chinese secondary school students’ intention to learn artificial

intelligence. Mathematics 2020, 8, 2089. [CrossRef]

5. Cugurullo, F. Urban Artificial Intelligence: From Automation to Autonomy in the

Smart City. Front. Sustain. Cities 2020, 2. [CrossRef]

6. Cope, B.; Kalantzis, M.; Searsmith, D. Artificial intelligence for education:

Knowledge and its assessment in AI-enabled learning ecologies. Educ. Philos.

Theory 2020, 1–17. [CrossRef]

7. Korteling, J.E.; van de Boer-Visschedijk, G.C.; Blankendaal, R.A.M.; Boonekamp,

R.C.; Eikelboom, A.R. Human-versus Artificial Intelligence. Front. Artif. Intell.

2021, 4. [CrossRef]

8. Paiva, S.; Ahad, M.; Tripathi, G.; Feroz, N.; Casalino, G. Enabling Technologies

for Urban Smart Mobility: Recent Trends, Opportunities and Challenges. Sensors

2021, 21, 2143. [CrossRef]

9. Hwang, S.; Song, Y.; Kim, J. Evaluation of AI-Assisted Telemedicine Service

Using a Mobile Pet Application. Appl. Sci. 2021, 11, 2707. [CrossRef]

Published

2025-08-07

How to Cite

Davlatov Akrom Olimovich. (2025). YANGI BAHOLASH TIZIMINI RAQAMLASHTIRISH: O‘QUVCHI NATIJALARINI SUN’IY INTELLEKT YORDAMIDA TAHLIL QILISH YONDASHUVI . TADQIQOTLAR, 67(1), 231-235. https://scientific-jl.com/tad/article/view/25916