THE ORIGIN OF LETTUCE AND METHODS OF GROWING IT ON A GLOBAL SCALE (BASED ON HYDROPONICS).

Authors

  • Kuchkorova Gulasal Author

Keywords:

Keywords. agricultural systems, environmental impact, resource management, hydroponic farming, soil-less systems, vegetable crops, nutrient uptake, biofertilizer application, crop yield, food production, farming technology, soil contamination, water use, organic farming, environmental sustainability, greenhouse agriculture.

Abstract

Abstract 
Lettuce (Lactuca sativa L.) is a globally recognized leafy vegetable known for 
its nutritional value and versatility. The cultivation of lettuce in hydroponic systems, 
specifically  using  the  Nutrient  Film  Technique  (NFT)  and  Deep  Flow  Technique 
(DFT), has gained popularity for its efficiency and environmental sustainability. This 
study  explores  the  effects  of  biofertilizers,  including  Plant  Growth-Promoting 
Rhizobacteria (PGPR), Arbuscular Mycorrhizal Fungi (AMF), and microalgae, on the 
growth performance of lettuce in hydroponic systems. Lettuce plants were grown under 
controlled environmental conditions, with consistent nutrient solution management, 
including pH and electrical conductivity adjustments. Biofertilizers were applied at 
different concentrations (50% MF + B, 50% MF + AMF, 50% MF + microalgae) to 
assess their influence on growth parameters such as leaf area, leaf number, plant height, 
and  biomass.  The  results  revealed  that  biofertilizers  significantly  improved  lettuce 
growth, with PGPR treatment yielding the greatest increase in leaf area and biomass. 
These biofertilizers contributed to enhanced nutrient availability and improved root 
health, promoting better growth compared to control groups. The findings highlight the 
potential  of  biofertilizers  to  optimize  hydroponic  lettuce  production  by  improving 
resource  use  efficiency  and  fostering  sustainable  agricultural  practices.  This  study 
offers  valuable  insights  into  hydroponic  lettuce  cultivation  and  the  integration  of 
biofertilizers as a promising solution for improving plant growth and yield in controlled 
environments. 

References

Referance

1) FAOSTAT. Statistics of the Food and Agriculture Organization of the

United Nations. (2018). http://www.fao.org/faostat/en/#data/QC/ Accesed 21 June

2020.

2) UPOV (International Union for the Protection of New Varieties of Plants) (2019)

Guidelines for the Conduct of Tests for Distinctness, Homogeneity, and Stability. Document

UPOV TG/13/11 Rev, Geneva, Switzerland.

3) Lebeda, A., Doleˇzalov´a, I., & Astley, D. (2004). Representation of wild Lactuca

spp. (Asteraceae, Lactuceae) in world genebank collections. Genetic Resources and Crop

Evolution, 51(2), 167–174. https://doi.org/10.1023/B:GRES.0000020860.66075.f7.

4) Rodenburg C.M., 1960. Varieties of Lettuce. An International Monograph.

Zwolle, W.E.J. Tjeenk Willink.

5) Mou b., 2008. Lettuce. In: PROHENS J., NUEZ F. (eds), Handbook of Plant

Breeding. Vegetables I. Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae. New

York, Springer Science: 75–116.

6) Lebeda A., Křístková E., 1995. Genetic resources of vegetable crops from the

genus Lactuca. Horticultural Science (Prague), 22: 117–121.

7) Romani, A.; Pinelli, P.; Galardi, C.; Sani, G.; Cimato, A.; Heimler, D. Polyphenols

in Greenhouse and Open-Air-Grown Lettuce. Food Chem. 2002, 79, 337–342. [CrossRef]

8) Husain, S.R.; Cilurd, J.; Cillard, P. Hydroxyl radical scavenging activity of

Flavonoids. Phytochemistry 1987, 26, 2489–2491. [CrossRef]

9) Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in

Brassica Vegetables. Molecules 2011, 16, 251–280. [CrossRef] [PubMed]

10) Kozai, T., 2018a. Current status of plant factories with artificial lighting (PFALs)

and smart PFALs. In: Kozai, T. (Ed.), Smart Plant Factory: The Next Generation Indoor Vertical

Farms. Springer, Singapore, pp. 3–13. https://doi.org/10.1007/978-981-13- 1065-2_1

11) Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., Radoglou,

K., 2018. Current status and recent achievements in the field of horticulture with the use of light-

emitting diodes (LEDs). Sci. Hortic. 235, 437–451. https://doi.org/10.1016/

j.scienta.2018.02.058.

12) Zhang, X., He, D., Niu, G., Yan, Z., Song, J., 2018. Effects of environment lighting

on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agricult.

Biol. Eng. 11, 33–40. https://doi.org/10.25165/j.ijabe.20181102.3240.

13) Ahmed, H.A., Yu-Xin, T., Qi-Chang, Y., 2020a. Optimal control of environmental

conditions affecting lettuce plant growth in a controlled environment with artificial lighting: a

review. S. Afr. J. Bot. 130, 75–89. https://doi.org/10.1016/j. sajb.2019.12.018.

14) Jones, J.B., Jr. Hydroponics: A Practical Guide for the Soilless Grower, 2nd ed.;

CRC Press: Boca Raton, FL, USA, 2005; p. 423.

15) Pandey, R.; Jain, V.; Singh, K.P. Hydroponics agriculture: Its status, scope and

limitations. Division of Plant Physiology, Indian Agric. Res. Inst. 2009, 20–29.

16) Savvas D. (2003) Hydroponics: A modern technology supporting the application

of integrated crop management in greenhouse. Journal of Food, Agriculture and Environment, 1:

80-86.

17) Rahman M.J. Quamruzzaman M. Uddain J. Sarkar M.D. Islam M.Z. Zakia M.Z.

Subramaniam S. (2018) Photosynthetic response and antioxidant content in bitter gourd as

influenced by organic substrates and nutrient solution. HortScience, 53(9): 1314-1318.

18) Avidan A. (2000) The use of substrates in Israel. World congress on soilless

culture on agriculture in the coming millennium. Maale Hachamisha, Israel. pp.17.

19) Rahman M.J. Khatun P. Quamruzzaman M. Chawdhery M. R. A. Zakia M. Z.

Raihan A. Sarkar M. D. Ali M. M. Ahmed S. (2017a) Growth and yield of different lettuce varieties grown in the hydroponic system in Bangladesh. Bangladesh Journal of Horticulture,

3(2), Series 2: 23-29.

20) Bradley, P.; Marulanda, C. Simplified hydroponics to reduce global hunger. Acta

Hort. 2001, 554, 289–295. [CrossRef]

21) Rodrigues, L.R.F. Growing by hydroponics: Hydroponic cultivation techniques

and environmental control in the management of pests, diseases and plant nutrition in a protected

environment. Jaboticabal FUNEP 2002, 726.

22) Nxawe, S.; Laubscher, C.; Ndakidemi, P. Effect of regulated irrigation water

temperature on hydroponics production of Spinach (Spinacia oleracea L.). Afr. J. Agric. Res.

2009, 12, 1442–1446.

23) Frasetya B, Taofik A and Firdaus R K 2018 Evaluation fo Variation Electrical

Conductivity Value on The Growth of Lettuce (Lactuca sativa L.) In The NFT System J. Agro 5

2 95–102

24) Hopkinson S and Harris M 2019 Effect of pH on Hydroponically Grown Bush

Beans (phaseolus vulgaris) Int. J. Environ. Agric. Biotechnol. 4 1 142–145

25) Qurrohman B F T 2019 Hydroponic Lettuce Plant Concept and Application

(Bandung: Research and Publication Center of UIN SGD Bandung)

26) Promwee, A.; Intana, W. Trichoderma asperellum (NST-009): A potential native

antagonistic fungus to control Cercospora leaf spot and promote the growth of ‘Green Oak’

lettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic system. Plant Protection

Science, v.58, p.139-149, 2022. https://doi.org/10.17221/69/2021-PPS

27) Wahome P K, Oseni T O, Masarirambi M T and Shongwe V D 2011 Effects of

Different Hydroponics Systems and Growing Media on the Vegetative Growth, Yield and Cut

Flower Quality of Gypsophila (Gypsophila paniculata L.) World J. Agric. Sci. 7 6 692–698

28) Velazquez-Gonzalez, R.S., Garcia-Garcia, A.L., Ventura-Zapata, E., Barceinas-

Sanchez, J. D.O., Sosa-Savedra, J.C., 2022. A review on hydroponics and the technologies

associated for medium-and small-scale operations. Agriculture 12, 646.

29) Sharma, N., Acharya, S., Kumar, K., Singh, N., Chaurasia, O.P., 2018.

Hydroponics as an advanced technique for vegetable production: an overview. J. Soil Water

Conserv. 17 (4), 364–371.

30) United Nations, 2021. The United Nations World Water Development Report

2021:Valuing Water.

31) Tomasi, N., Dalla Costa, L., Pinton, R., Cortella, G., Terzano, R., Mimmo,

T.,Scampicchio, M., Cesco, S., 2014. New “solutions” for floating cultivation system of ready-

to-eat salad: A review. Trends Food Sci. Technol. 46, 267–276. https://doi.

32) Buckseth, T., Sharma, A.K., Pandey, K.K., Singh, B.P., Muthuraj, R., 2016.

Methods of pre-basic seed potato production with special reference to aeroponics—A review. Sci.

Hortic. (Amst. ). 204, 79–87. https://doi.org/10.1016/j.scienta.2016.03.041. 33) Kim, M.J., Moon, Y., Tou, J.C., Mou, B., Waterland, N.L., 2016. Nutritional

value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos.

Anal. 49, 19–34. https://doi.org/10.1016/j.jfca.2016.03.004.

34) Simko, I., 2019. Genetic variation and relationship among content of vitamins,

pigments, and sugars in baby leaf lettuce. Food Sci. Nutr. 7, 3317–3326.

35) Nicolle, C., Cardinault, N., Gueux, E., Jaffrelo, L., Rock, E., Mazur, A.,

Amouroux, P., R´em´esy, C., 2004. Health effect of vegetable-based diet: lettuce consumption

improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 23, 605–614.

36) Damerum, A., Chapman, M.A., Taylor, G., 2020. Innovative breeding

technologies in lettuce for improved post-harvest quality. Postharvest Biol. Tec. 168, 111266.

37) Stuart, D., 2011. Nature” is Not Guilty: foodborne Illness and the Industrial

Bagged Salad. Sociol. Ruralis. 51, 158–174.

38) Majid, M., Khan, J. N., Shah, Q. M., Masoodi, K. Z., Afroza, B., &

Parvaze, S. (2021). Evaluation of hydroponic systems for the cultivation of Lettuce

(Lactuca sativa L., var. longifolia) and comparison with protected soil based

cultivation. Agric. Water Manag.

39) Zappelini, J., Pescador, R., Girardello, G. M., Souza, P. P., Borghezan,

M., & Oliveira, J. L. (2024). Physiological alterations in ‘Rubinela’lettuce (Lactuca

sativa L.) cultivated in conventional and hydroponic systems. Acta Sci. Agron, 46.

40) Sharma N, Acharya S, Kumar K Singh N, Chaurasia OP.

(2018b). Hydroponics as an advanced technique for vegetable production: An

overview. Journal of Soil and Water Conservation 17 (4): 364-371.

https://doi.org/10.5958/2455- 7145.2018.00056.5.

41) Waiba, K. M., Sharma, P., Sharma, A., Chadha, S., & Kaur, M. (2020).

Soilless vegetable cultivation: a review. Journal of Pharmacognosy and

Phytochemistry, 9(1), 631–636.

42) Lee, S., & Lee, J. (2015). Beneficial bacteria and fungi in hydroponic

systems: Types and characteristics of hydroponic food production methods. Scientia

Horticulturae, 195, 206–215. https://doi.org/10.1016/j.scienta.2015.09.011

43) Gumisiriza, M. S., Kabirizi, J. M. L., Mugerwa, M., Ndakidemi, P. A., &

Mbega, E. R. (2022). Can soilless farming feed urban East Africa? An assessment of

the benefits and challenges of hydroponics in Uganda and Tanzania. Environmental

Challenges, 6(100413), 100413. https://doi.org/10.1016/j.envc.2021.100413

44) Szekely, I., & Jijakli, M. H. (2022). Bioponics as a promising approach to

sustainable agriculture: A review of the main methods for producing organic nutrient

solution for hydroponics. Water, 14(23), 3975. https://doi.org/10.3390/w14233975

45) Stegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The

use of PGPB to promote plant hydroponic growth. Plants, 11(20), 2783.

https://doi.org/10.3390/plants11202783

46) Jenkins, A., Keeffe, G., & Hall, N. (2015). Planning urban food production

into today’s cities. Future of Food: Journal on Food, Agriculture and Society, 3(1), 35–

47. http://f utureoffoodjournal.org/index.php/journal/article/view/149. (n.d.).

47) Geilfus, C.-M. (2019). Hydroponic Systems in Horticulture. In Controlled

Environment Horticulture (pp. 35–40). Springer International Publishing.

48) Nguyen, N. T., McInturf, S. A., & Mendoza-Cózatl, D. G. (2016).

Hydroponics: A versatile system to study nutrient allocation and plant responses to

nutrient availability and exposure to toxic elements. Journal of Visualized Experiments:

JoVE, 113. https://doi.org/10.3791/54317-v

49) Nursyahid, A., Setyawan, T. A., Sa’diyah, K., Wardihani, E. D., Helmy,

H., & Hasan, A. (2021). Analysis of Deep Water Culture (DWC) hydroponic nutrient

solution level control systems. IOP Conference Series. Materials Science and

Engineering, 1108(1), 012032. https://doi.org/10.1088/1757-899x/1108/1/012032.

50) Dasgan, H. Y., Yilmaz, M., Dere, S., Ikiz, B., & Gruda, N. S. (2023). Bio-

fertilizers reduced the need for the mineral fertilizers in soilless grown ˙ capia pepper.

Horticulturae 2023, 9, 188. Horticulturae 2023, 9, 188.

51) Vernieri, P., Borghesi, E., Tognoni, F., Serra, G., Ferrante, A., & Piagessi,

A. (2006). Use of biostimulants for reducing nutrient solution concentration in floating

system. Acta Horticulturae, 718, 477–484.

https://doi.org/10.17660/actahortic.2006.718.55

52) Povero, G., Mejia, J. F., Di Tommaso, D., Piaggesi, A., & Warrior, P.

(2016). A systematic approach to discover and characterize natural plant

biostimulants. Frontiers in Plant Science, 7, 435.

https://doi.org/10.3389/fpls.2016.00435

53) Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. B., Khan, Z., Mitra, S.,

Aljohani, A. S. M., Alhumaydhi, F. A., & Al-Awthan, Y. S. (2022). Phytochemicals,

Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A

Comprehensive Review. Antioxidants 2022, 11, 1158. https://doi.org/

10.3390/antiox11061158.

54) Funk, V. A., Bayer, R. J., Keeley, S., Chan, R., Watson, L., Gemeinholzer,

B., Schilling, E., Panero, J. L., Baldwin, B. G., & Garcia-Jacas, N. (2005). Everywhere

but Antarctica: Using a supertree to understand the diversity and distribution of the

Compositae. Biol. Skr, 55, 343–374.

55) Mampholo, B. M., Maboko, M. M., Soundy, P., & Sivakumar, D. (2016).

Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown

in closed hydroponic system. J. Food Qual, 39, 805–815.

56) Yang, X., Gil, M. I., Yang, Q., & Tomás-Barberán, F. A. (2022). Bioactive

compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and

Food Safety, 21(1), 4–45. https://doi.org/10.1111/1541-4337.12877

57) Wilson, P., Morrison, S., Hedges, L., Kerkhofs, N., & Lister, C. (2004).

Phenolics contribute significantly to higher antioxidant activity of red lettuce compared

to green lettuce. In Proceedings of the XXII International Conference on

Polyphenols (pp. 273–274).

58) Medina-Lozano, I., Bertolín, J. R., & Díaz, A. (2021). Nutritional value of

commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and

anthocyanin content. Food Chemistry, 359(129864), 129864.

https://doi.org/10.1016/j.foodchem.2021.129864

59) Martínez-Sánchez, A., Luna, M. C., Selma, M. V., Tudela, J. A., Abad, J.,

& Gil, M. I. (2012). Baby-leaf and multi-leaf of green and red lettuces are suitable raw

materials for the fresh-cut industry. . Postharvest Biol. Technol. 2012, 63, 1–10.

60) Güzel, M. E., Coşkunçelebi, K., Kilian, N., Makbul, S., & Gültepe, M.

(2021). Phylogeny and systematics of the Lactucinae (Asteraceae) focusing on their SW

Asian centre of diversity. Plant Systematics and Evolution, 307(1).

https://doi.org/10.1007/s00606-020-01719-y

61) Boubaker, H., Saadaoui, W., Dasgan, H. Y., Tarchoun, N., & Gruda, N.

S. (2023). Enhancing seed potato production from in vitro plantlets and microtubers

through biofertilizer application: Investigating effects on plant growth, tuber yield, size,

and quality. Agronomy, 13.

Published

2025-03-03

How to Cite

Kuchkorova Gulasal. (2025). THE ORIGIN OF LETTUCE AND METHODS OF GROWING IT ON A GLOBAL SCALE (BASED ON HYDROPONICS) . TADQIQOTLAR, 57(2025), 59-72. https://scientific-jl.com/tad/article/view/3891