THE ORIGIN OF LETTUCE AND METHODS OF GROWING IT ON A GLOBAL SCALE (BASED ON HYDROPONICS).
Keywords:
Keywords. agricultural systems, environmental impact, resource management, hydroponic farming, soil-less systems, vegetable crops, nutrient uptake, biofertilizer application, crop yield, food production, farming technology, soil contamination, water use, organic farming, environmental sustainability, greenhouse agriculture.Abstract
Abstract
Lettuce (Lactuca sativa L.) is a globally recognized leafy vegetable known for
its nutritional value and versatility. The cultivation of lettuce in hydroponic systems,
specifically using the Nutrient Film Technique (NFT) and Deep Flow Technique
(DFT), has gained popularity for its efficiency and environmental sustainability. This
study explores the effects of biofertilizers, including Plant Growth-Promoting
Rhizobacteria (PGPR), Arbuscular Mycorrhizal Fungi (AMF), and microalgae, on the
growth performance of lettuce in hydroponic systems. Lettuce plants were grown under
controlled environmental conditions, with consistent nutrient solution management,
including pH and electrical conductivity adjustments. Biofertilizers were applied at
different concentrations (50% MF + B, 50% MF + AMF, 50% MF + microalgae) to
assess their influence on growth parameters such as leaf area, leaf number, plant height,
and biomass. The results revealed that biofertilizers significantly improved lettuce
growth, with PGPR treatment yielding the greatest increase in leaf area and biomass.
These biofertilizers contributed to enhanced nutrient availability and improved root
health, promoting better growth compared to control groups. The findings highlight the
potential of biofertilizers to optimize hydroponic lettuce production by improving
resource use efficiency and fostering sustainable agricultural practices. This study
offers valuable insights into hydroponic lettuce cultivation and the integration of
biofertilizers as a promising solution for improving plant growth and yield in controlled
environments.
References
Referance
1) FAOSTAT. Statistics of the Food and Agriculture Organization of the
United Nations. (2018). http://www.fao.org/faostat/en/#data/QC/ Accesed 21 June
2020.
2) UPOV (International Union for the Protection of New Varieties of Plants) (2019)
Guidelines for the Conduct of Tests for Distinctness, Homogeneity, and Stability. Document
UPOV TG/13/11 Rev, Geneva, Switzerland.
3) Lebeda, A., Doleˇzalov´a, I., & Astley, D. (2004). Representation of wild Lactuca
spp. (Asteraceae, Lactuceae) in world genebank collections. Genetic Resources and Crop
Evolution, 51(2), 167–174. https://doi.org/10.1023/B:GRES.0000020860.66075.f7.
4) Rodenburg C.M., 1960. Varieties of Lettuce. An International Monograph.
Zwolle, W.E.J. Tjeenk Willink.
5) Mou b., 2008. Lettuce. In: PROHENS J., NUEZ F. (eds), Handbook of Plant
Breeding. Vegetables I. Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae. New
York, Springer Science: 75–116.
6) Lebeda A., Křístková E., 1995. Genetic resources of vegetable crops from the
genus Lactuca. Horticultural Science (Prague), 22: 117–121.
7) Romani, A.; Pinelli, P.; Galardi, C.; Sani, G.; Cimato, A.; Heimler, D. Polyphenols
in Greenhouse and Open-Air-Grown Lettuce. Food Chem. 2002, 79, 337–342. [CrossRef]
8) Husain, S.R.; Cilurd, J.; Cillard, P. Hydroxyl radical scavenging activity of
Flavonoids. Phytochemistry 1987, 26, 2489–2491. [CrossRef]
9) Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in
Brassica Vegetables. Molecules 2011, 16, 251–280. [CrossRef] [PubMed]
10) Kozai, T., 2018a. Current status of plant factories with artificial lighting (PFALs)
and smart PFALs. In: Kozai, T. (Ed.), Smart Plant Factory: The Next Generation Indoor Vertical
Farms. Springer, Singapore, pp. 3–13. https://doi.org/10.1007/978-981-13- 1065-2_1
11) Bantis, F., Smirnakou, S., Ouzounis, T., Koukounaras, A., Ntagkas, N., Radoglou,
K., 2018. Current status and recent achievements in the field of horticulture with the use of light-
emitting diodes (LEDs). Sci. Hortic. 235, 437–451. https://doi.org/10.1016/
j.scienta.2018.02.058.
12) Zhang, X., He, D., Niu, G., Yan, Z., Song, J., 2018. Effects of environment lighting
on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agricult.
Biol. Eng. 11, 33–40. https://doi.org/10.25165/j.ijabe.20181102.3240.
13) Ahmed, H.A., Yu-Xin, T., Qi-Chang, Y., 2020a. Optimal control of environmental
conditions affecting lettuce plant growth in a controlled environment with artificial lighting: a
review. S. Afr. J. Bot. 130, 75–89. https://doi.org/10.1016/j. sajb.2019.12.018.
14) Jones, J.B., Jr. Hydroponics: A Practical Guide for the Soilless Grower, 2nd ed.;
CRC Press: Boca Raton, FL, USA, 2005; p. 423.
15) Pandey, R.; Jain, V.; Singh, K.P. Hydroponics agriculture: Its status, scope and
limitations. Division of Plant Physiology, Indian Agric. Res. Inst. 2009, 20–29.
16) Savvas D. (2003) Hydroponics: A modern technology supporting the application
of integrated crop management in greenhouse. Journal of Food, Agriculture and Environment, 1:
80-86.
17) Rahman M.J. Quamruzzaman M. Uddain J. Sarkar M.D. Islam M.Z. Zakia M.Z.
Subramaniam S. (2018) Photosynthetic response and antioxidant content in bitter gourd as
influenced by organic substrates and nutrient solution. HortScience, 53(9): 1314-1318.
18) Avidan A. (2000) The use of substrates in Israel. World congress on soilless
culture on agriculture in the coming millennium. Maale Hachamisha, Israel. pp.17.
19) Rahman M.J. Khatun P. Quamruzzaman M. Chawdhery M. R. A. Zakia M. Z.
Raihan A. Sarkar M. D. Ali M. M. Ahmed S. (2017a) Growth and yield of different lettuce varieties grown in the hydroponic system in Bangladesh. Bangladesh Journal of Horticulture,
3(2), Series 2: 23-29.
20) Bradley, P.; Marulanda, C. Simplified hydroponics to reduce global hunger. Acta
Hort. 2001, 554, 289–295. [CrossRef]
21) Rodrigues, L.R.F. Growing by hydroponics: Hydroponic cultivation techniques
and environmental control in the management of pests, diseases and plant nutrition in a protected
environment. Jaboticabal FUNEP 2002, 726.
22) Nxawe, S.; Laubscher, C.; Ndakidemi, P. Effect of regulated irrigation water
temperature on hydroponics production of Spinach (Spinacia oleracea L.). Afr. J. Agric. Res.
2009, 12, 1442–1446.
23) Frasetya B, Taofik A and Firdaus R K 2018 Evaluation fo Variation Electrical
Conductivity Value on The Growth of Lettuce (Lactuca sativa L.) In The NFT System J. Agro 5
2 95–102
24) Hopkinson S and Harris M 2019 Effect of pH on Hydroponically Grown Bush
Beans (phaseolus vulgaris) Int. J. Environ. Agric. Biotechnol. 4 1 142–145
25) Qurrohman B F T 2019 Hydroponic Lettuce Plant Concept and Application
(Bandung: Research and Publication Center of UIN SGD Bandung)
26) Promwee, A.; Intana, W. Trichoderma asperellum (NST-009): A potential native
antagonistic fungus to control Cercospora leaf spot and promote the growth of ‘Green Oak’
lettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic system. Plant Protection
Science, v.58, p.139-149, 2022. https://doi.org/10.17221/69/2021-PPS
27) Wahome P K, Oseni T O, Masarirambi M T and Shongwe V D 2011 Effects of
Different Hydroponics Systems and Growing Media on the Vegetative Growth, Yield and Cut
Flower Quality of Gypsophila (Gypsophila paniculata L.) World J. Agric. Sci. 7 6 692–698
28) Velazquez-Gonzalez, R.S., Garcia-Garcia, A.L., Ventura-Zapata, E., Barceinas-
Sanchez, J. D.O., Sosa-Savedra, J.C., 2022. A review on hydroponics and the technologies
associated for medium-and small-scale operations. Agriculture 12, 646.
29) Sharma, N., Acharya, S., Kumar, K., Singh, N., Chaurasia, O.P., 2018.
Hydroponics as an advanced technique for vegetable production: an overview. J. Soil Water
Conserv. 17 (4), 364–371.
30) United Nations, 2021. The United Nations World Water Development Report
2021:Valuing Water.
31) Tomasi, N., Dalla Costa, L., Pinton, R., Cortella, G., Terzano, R., Mimmo,
T.,Scampicchio, M., Cesco, S., 2014. New “solutions” for floating cultivation system of ready-
to-eat salad: A review. Trends Food Sci. Technol. 46, 267–276. https://doi.
32) Buckseth, T., Sharma, A.K., Pandey, K.K., Singh, B.P., Muthuraj, R., 2016.
Methods of pre-basic seed potato production with special reference to aeroponics—A review. Sci.
Hortic. (Amst. ). 204, 79–87. https://doi.org/10.1016/j.scienta.2016.03.041. 33) Kim, M.J., Moon, Y., Tou, J.C., Mou, B., Waterland, N.L., 2016. Nutritional
value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos.
Anal. 49, 19–34. https://doi.org/10.1016/j.jfca.2016.03.004.
34) Simko, I., 2019. Genetic variation and relationship among content of vitamins,
pigments, and sugars in baby leaf lettuce. Food Sci. Nutr. 7, 3317–3326.
35) Nicolle, C., Cardinault, N., Gueux, E., Jaffrelo, L., Rock, E., Mazur, A.,
Amouroux, P., R´em´esy, C., 2004. Health effect of vegetable-based diet: lettuce consumption
improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 23, 605–614.
36) Damerum, A., Chapman, M.A., Taylor, G., 2020. Innovative breeding
technologies in lettuce for improved post-harvest quality. Postharvest Biol. Tec. 168, 111266.
37) Stuart, D., 2011. Nature” is Not Guilty: foodborne Illness and the Industrial
Bagged Salad. Sociol. Ruralis. 51, 158–174.
38) Majid, M., Khan, J. N., Shah, Q. M., Masoodi, K. Z., Afroza, B., &
Parvaze, S. (2021). Evaluation of hydroponic systems for the cultivation of Lettuce
(Lactuca sativa L., var. longifolia) and comparison with protected soil based
cultivation. Agric. Water Manag.
39) Zappelini, J., Pescador, R., Girardello, G. M., Souza, P. P., Borghezan,
M., & Oliveira, J. L. (2024). Physiological alterations in ‘Rubinela’lettuce (Lactuca
sativa L.) cultivated in conventional and hydroponic systems. Acta Sci. Agron, 46.
40) Sharma N, Acharya S, Kumar K Singh N, Chaurasia OP.
(2018b). Hydroponics as an advanced technique for vegetable production: An
overview. Journal of Soil and Water Conservation 17 (4): 364-371.
https://doi.org/10.5958/2455- 7145.2018.00056.5.
41) Waiba, K. M., Sharma, P., Sharma, A., Chadha, S., & Kaur, M. (2020).
Soilless vegetable cultivation: a review. Journal of Pharmacognosy and
Phytochemistry, 9(1), 631–636.
42) Lee, S., & Lee, J. (2015). Beneficial bacteria and fungi in hydroponic
systems: Types and characteristics of hydroponic food production methods. Scientia
Horticulturae, 195, 206–215. https://doi.org/10.1016/j.scienta.2015.09.011
43) Gumisiriza, M. S., Kabirizi, J. M. L., Mugerwa, M., Ndakidemi, P. A., &
Mbega, E. R. (2022). Can soilless farming feed urban East Africa? An assessment of
the benefits and challenges of hydroponics in Uganda and Tanzania. Environmental
Challenges, 6(100413), 100413. https://doi.org/10.1016/j.envc.2021.100413
44) Szekely, I., & Jijakli, M. H. (2022). Bioponics as a promising approach to
sustainable agriculture: A review of the main methods for producing organic nutrient
solution for hydroponics. Water, 14(23), 3975. https://doi.org/10.3390/w14233975
45) Stegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The
use of PGPB to promote plant hydroponic growth. Plants, 11(20), 2783.
https://doi.org/10.3390/plants11202783
46) Jenkins, A., Keeffe, G., & Hall, N. (2015). Planning urban food production
into today’s cities. Future of Food: Journal on Food, Agriculture and Society, 3(1), 35–
47. http://f utureoffoodjournal.org/index.php/journal/article/view/149. (n.d.).
47) Geilfus, C.-M. (2019). Hydroponic Systems in Horticulture. In Controlled
Environment Horticulture (pp. 35–40). Springer International Publishing.
48) Nguyen, N. T., McInturf, S. A., & Mendoza-Cózatl, D. G. (2016).
Hydroponics: A versatile system to study nutrient allocation and plant responses to
nutrient availability and exposure to toxic elements. Journal of Visualized Experiments:
JoVE, 113. https://doi.org/10.3791/54317-v
49) Nursyahid, A., Setyawan, T. A., Sa’diyah, K., Wardihani, E. D., Helmy,
H., & Hasan, A. (2021). Analysis of Deep Water Culture (DWC) hydroponic nutrient
solution level control systems. IOP Conference Series. Materials Science and
Engineering, 1108(1), 012032. https://doi.org/10.1088/1757-899x/1108/1/012032.
50) Dasgan, H. Y., Yilmaz, M., Dere, S., Ikiz, B., & Gruda, N. S. (2023). Bio-
fertilizers reduced the need for the mineral fertilizers in soilless grown ˙ capia pepper.
Horticulturae 2023, 9, 188. Horticulturae 2023, 9, 188.
51) Vernieri, P., Borghesi, E., Tognoni, F., Serra, G., Ferrante, A., & Piagessi,
A. (2006). Use of biostimulants for reducing nutrient solution concentration in floating
system. Acta Horticulturae, 718, 477–484.
https://doi.org/10.17660/actahortic.2006.718.55
52) Povero, G., Mejia, J. F., Di Tommaso, D., Piaggesi, A., & Warrior, P.
(2016). A systematic approach to discover and characterize natural plant
biostimulants. Frontiers in Plant Science, 7, 435.
https://doi.org/10.3389/fpls.2016.00435
53) Shi, M., Gu, J., Wu, H., Rauf, A., Emran, T. B., Khan, Z., Mitra, S.,
Aljohani, A. S. M., Alhumaydhi, F. A., & Al-Awthan, Y. S. (2022). Phytochemicals,
Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A
Comprehensive Review. Antioxidants 2022, 11, 1158. https://doi.org/
10.3390/antiox11061158.
54) Funk, V. A., Bayer, R. J., Keeley, S., Chan, R., Watson, L., Gemeinholzer,
B., Schilling, E., Panero, J. L., Baldwin, B. G., & Garcia-Jacas, N. (2005). Everywhere
but Antarctica: Using a supertree to understand the diversity and distribution of the
Compositae. Biol. Skr, 55, 343–374.
55) Mampholo, B. M., Maboko, M. M., Soundy, P., & Sivakumar, D. (2016).
Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown
in closed hydroponic system. J. Food Qual, 39, 805–815.
56) Yang, X., Gil, M. I., Yang, Q., & Tomás-Barberán, F. A. (2022). Bioactive
compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and
Food Safety, 21(1), 4–45. https://doi.org/10.1111/1541-4337.12877
57) Wilson, P., Morrison, S., Hedges, L., Kerkhofs, N., & Lister, C. (2004).
Phenolics contribute significantly to higher antioxidant activity of red lettuce compared
to green lettuce. In Proceedings of the XXII International Conference on
Polyphenols (pp. 273–274).
58) Medina-Lozano, I., Bertolín, J. R., & Díaz, A. (2021). Nutritional value of
commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and
anthocyanin content. Food Chemistry, 359(129864), 129864.
https://doi.org/10.1016/j.foodchem.2021.129864
59) Martínez-Sánchez, A., Luna, M. C., Selma, M. V., Tudela, J. A., Abad, J.,
& Gil, M. I. (2012). Baby-leaf and multi-leaf of green and red lettuces are suitable raw
materials for the fresh-cut industry. . Postharvest Biol. Technol. 2012, 63, 1–10.
60) Güzel, M. E., Coşkunçelebi, K., Kilian, N., Makbul, S., & Gültepe, M.
(2021). Phylogeny and systematics of the Lactucinae (Asteraceae) focusing on their SW
Asian centre of diversity. Plant Systematics and Evolution, 307(1).
https://doi.org/10.1007/s00606-020-01719-y
61) Boubaker, H., Saadaoui, W., Dasgan, H. Y., Tarchoun, N., & Gruda, N.
S. (2023). Enhancing seed potato production from in vitro plantlets and microtubers
through biofertilizer application: Investigating effects on plant growth, tuber yield, size,
and quality. Agronomy, 13.