INTELLIGENT SOFTWARE FOR CONTROLLING ROBOTIC SYSTEMS USING VIRTUAL MODELING

Authors

  • U.A. Ziyamuxammedova Author
  • Mahmudov L. A Author
  • Erkayev S. R Author

Keywords:

Keywords: Mobile Robot, Intelligent Control Software, CoppeliaSim, Autonomous Navigation, Simulation, Human-Robot Interface.

Abstract

Abstract: In the evolving landscape of robotics and automation, the need for 
intelligent software that enables autonomous, adaptive, and efficient robot behavior is 
becoming increasingly vital. This research explores the design and development of 
intelligent control software for mobile robotic systems, emphasizing virtual modeling 
and simulation as key tools in the development process. Utilizing the CoppeliaSim Edu 
environment,  a  three-wheeled  mobile  robot  was  modeled,  simulated,  and  equipped 
with multiple sensory modules including infrared proximity sensors, color detection 
units, and timing mechanisms. The robot operates in both manual and autonomous 
modes  and  is  governed  by  a  custom-designed  user  interface  that  allows  real-time 
parameter  adjustments,  path  planning,  and  command  sequencing.  The  simulation 
environment not only provides a low-cost, safe, and flexible platform for testing and 
analysis but also serves as a bridge between theoretical algorithm development and 
practical  robotic  deployment.  The  robot's  behavior  was  governed  by  mathematical 
models  that  consider  sensor  feedback  for  dynamic  navigation,  wall-following,  and 
obstacle avoidance. The system's performance was evaluated using visual trajectory 
analysis,  tabulated  motion  parameters,  and  sensor  response  graphs.  The  findings 
demonstrate the viability of using virtual prototyping as a core part of robotic system 
design, allowing for rapid iteration and refinement. Moreover, the modular architecture 
of the system supports further integration with machine learning techniques such as 
reinforcement  learning,  enabling  advanced  autonomous  behavior.  This  research 
contributes to the growing field of intelligent mechatronic system design and provides 
a strong foundation for continued exploration in both academic and industrial settings. 

References

REFERENCES

1. Craig, J. J. (1987). Introduction to Robotics: Mechanics and control. In IEEE &

Department of Electrical Engineering and Applied Physics, Case Institute of

Technology, Case Western Reserve University, IEEE JOURNAL OF ROBOTICS

AND AUTOMATION: Vol. RA-3 (Issue 2).

2. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J. (2018).

An introduction to deep reinforcement learning. Foundations and Trends® in

Machine Learning, 11(3–4), 219–354. https://doi.org/10.1561/2200000071

3. Joseph, L. (2018). Learning robotics using Python: Design, Simulate, Program, and

Prototype an Autonomous Mobile Robot Using ROS, OpenCV, PCL, and Python,

2nd Edition.

4. Mataric, M. J. (2007). The Robotics primer. MIT Press.

5. Quigley, M., Gerkey, B., & Smart, W. D. (2015). Programming Robots with Ros.

O’Reilly Media.

6. Siciliano, B., & Khatib, O. (Eds.). (2016). Springer Handbook of Robotics (2nd

ed.). Springer. https://doi.org/10.1007/978-3-319-32552-1

7. Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to

Autonomous Mobile Robots, second edition. MIT Press.

8. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. MIT Press.

9. Zadeh, L. (1996). Fuzzy logic = computing with words. IEEE Transactions on

Fuzzy Systems, 4(2), 103–111. https://doi.org/10.1109/91.493904

Published

2025-04-08

How to Cite

U.A. Ziyamuxammedova, Mahmudov L. A, & Erkayev S. R. (2025). INTELLIGENT SOFTWARE FOR CONTROLLING ROBOTIC SYSTEMS USING VIRTUAL MODELING . TADQIQOTLAR, 59(4), 48-53. https://scientific-jl.com/tad/article/view/8077