INTELLIGENT AI-BASED NAVIGATION SYSTEM FOR MOBILE ROBOTS

Authors

  • U.A. Ziyamuxammedova Author
  • Mahmudov L. A Author
  • Erkayev S. R Author

Keywords:

Keywords: AI Navigation, Mobile Robots, Simulation, CoppeliaSim, Reinforcement Learning, Sensor Fusion, Path Planning

Abstract

Abstract:  The  integration  of  artificial  intelligence  (AI)  into  mobile  robotic 
systems is redefining the landscape of autonomous navigation, decision-making, and 
task  execution.  Traditional  rule-based  systems,  while  effective  in  structured 
environments, often fail in dynamic or unknown terrains. This research investigates the 
application of AI techniques – namely fuzzy logic and reinforcement learning  – in 
developing  an  intelligent  navigation  system  for  mobile  robots  within  a  virtual 
simulation  environment.  Using  the  CoppeliaSim  Edu  platform,  a  three-wheeled 
differential-drive mobile robot was modeled, equipped with various sensors (infrared, 
ultrasonic, compass), and placed in a randomized maze-like environment. The robot’s 
goal  was  to  autonomously  navigate  the  environment,  avoid  obstacles,  and  reach 
predefined targets efficiently. Initially, a fuzzy rule-based controller was implemented 
to  provide  baseline  navigation  logic.  Subsequently,  a  Q-learning  reinforcement 
learning  agent  was  introduced  to  optimize  path  planning  through  experience-based 
learning.  The  combination  of  these  techniques  led  to  a  marked  improvement  in 
navigation  performance,  as  evidenced  by  reduced  completion  times  and  increased 
obstacle  avoidance  efficiency.  Graphical  data  and  tabular  analysis  support  the 
effectiveness of AI-based control versus traditional logic. The research confirms that 
virtual environments, coupled with intelligent algorithms, can serve as powerful tools 
for  developing  and  testing  advanced  robotic  control  systems  before  deployment  in 
physical hardware. This approach is cost-effective, safe, and scalable for educational, 
research, and industrial applications. 

References

REFERENCES

1. Boubertakh, H., Tadjine, M., & Glorennec, P. (2008). A simple goal seeking

navigation method for a mobile robot using human sense, fuzzy logic and

reinforcement learning. In Lecture notes in computer science (pp. 666–673).

https://doi.org/10.1007/978-3-540-85563-7_84

2. Glorennec, P. Y. (1996). Fuzzy Logic-Based navigation for an autonomous

robot. IFAC Proceedings Volumes, 29(4), 45–49. https://doi.org/10.1016/s1474-

6670(17)44683-0

3. Khriji, L., Touati, F., Benhmed, K., & Al-Yahmedi, A. (2011). Mobile robot

navigation based on Q-Learning technique. International Journal of Advanced

Robotic Systems, 8(1). https://doi.org/10.5772/10528

4. Kumar, A., Sahasrabudhe, A., & Nirgude, S. (2024, September 4). Fuzzy logic

control for indoor navigation of mobile robots. arXiv.org.

https://arxiv.org/abs/2409.02437

5. Ouyang, L., Che, Y., Yan, L., & Park, C. (2022). Multiple perspectives on

analyzing risk factors in FMEA. Computers in Industry, 141, 103712.

https://doi.org/10.1016/j.compind.2022.103712

6. Parhi, D. R. (2005). Navigation of mobile robots using a fuzzy logic controller.

Journal of Intelligent & Robotic Systems, 42(3), 253–273.

https://doi.org/10.1007/s10846-004-7195-x

7. Rashid, R., Elamvazuthi, I., Begam, M., & Arrofiq, M. (2010, March 22). Fuzzy-

based navigation and control of a Non-Holonomic mobile robot. arXiv.org.

https://arxiv.org/abs/1003.4081

8. Ryang, H., & Yun, U. (2016). High utility pattern mining over data streams with

sliding window technique. Expert Systems With Applications, 57, 214–231.

https://doi.org/10.1016/j.eswa.2016.03.001

9. Surmann, H., Jestel, C., Marchel, R., Musberg, F., Elhadj, H., & Ardani, M.

(2020, May 28). Deep Reinforcement learning for real autonomous mobile robot

navigation in indoor environments. arXiv.org. https://arxiv.org/abs/2005.13857

10. Wondosen, A., & Shiferaw, D. (2024, January 3). Fuzzy Logic Controller design

for mobile robot outdoor navigation. arXiv.org.

https://arxiv.org/abs/2401.01756

Published

2025-04-08

How to Cite

U.A. Ziyamuxammedova, Mahmudov L. A, & Erkayev S. R. (2025). INTELLIGENT AI-BASED NAVIGATION SYSTEM FOR MOBILE ROBOTS . TADQIQOTLAR, 59(4), 54-58. https://scientific-jl.com/tad/article/view/8078