AQLLI ENERGETIKA TIZIMLARIDA SVM ALGORITMI ASOSIDA AVTOMATLASHTIRISHNING TEXNOLOGIK AFZALLIKLARI
Keywords:
Kalit so‘zlar: Aqlli energiya tizimi, SVM, MEUT(AC), SCADA, avtomatlashtirish, sun’iy intellekt, nosozlik aniqlash, texnik xizmat, optimal joylashtirish.Abstract
Annotatsiya: Ushbu maqolada aqlli energiya tizimlarida avtomatlashtirishning texnologik afzalliklari va sun’iy intellekt algoritmlaridan biri — Support Vector Machine (SVM) algoritmining qo‘llanilishi tahlil qilinadi. Ayniqsa, MEUT(AC) qurilmalari bilan integratsiyada SVM yordamida nosozliklarni aniqlash, tizim holatini baholash, reaktiv quvvatni boshqarish va optimal joylashtirish kabi jarayonlar samarali tarzda avtomatlashtirilishi yoritiladi.References
1. Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer.
2. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
3. Kundur, P. (1994). Power System Stability and Control. McGraw-Hill.
4. Glover, J. D., Sarma, M. S., & Overbye, T. J. (2011). Power System Analysis and Design. Cengage Learning.
5. IEEE Power & Energy Society. Standards on SCADA and PMU technologies.
6. Jabr, R. A., & Pal, B. C. (2009). A flexible AC transmission system (FACTS) controller based on SVM. IEEE Transactions on Power Systems.
Downloads
Published
2025-05-09
Issue
Section
Articles
How to Cite
Abraev Tursunpolat Azamat o’g’li, & Samad Nimatov. (2025). AQLLI ENERGETIKA TIZIMLARIDA SVM ALGORITMI ASOSIDA AVTOMATLASHTIRISHNING TEXNOLOGIK AFZALLIKLARI. World Scientific Research Journal, 39(1), 166-172. https://scientific-jl.com/wsrj/article/view/12617