MODERN METHODS FOR SOLVING FIRST-ORDER DIFFERENTIAL EQUATIONS
Keywords:
Keywords: differential equations, first-order, numerical methods, Runge-Kutta, machine learning, MATLAB, Python.Abstract
Abstract: First-order differential equations play a crucial role in mathematics, physics, engineering, and economics. This article examines modern methods for solving first-order differential equations, focusing on numerical techniques (e.g., Euler, Runge-Kutta), computational tools (e.g., MATLAB, Python), and machine learning-based approaches. The advantages, limitations, and practical applications of these methods are discussed. The aim of this study is to compare these methods, evaluate their effectiveness, and provide guidance for researchers and practitioners.
References
1. Reddy, J. N. - "An Introduction to the Finite Element Method," McGraw-Hill, 2006. Finite element usuli asoslari va ularning muhandislikda qo‘llanilishi.
2. Kreyszig, E. - "Advanced Engineering Mathematics," Wiley, 2011. Zamonaviy matematik usullar va ularning muhandislik sohalaridagi qo‘llanilishi.
3. Boyce, W. E., DiPrima, R. C. - "Elementary Differential Equations and Boundary Value Problems," John Wiley & Sons, 2017. Differensial tenglamalar va chegaraviy qiymat masalalarini yechishning asosiy usullari haqida.
4. Jonqobilov, J.T.. Texnologik Jarayonlarni Monitoring Qilish Va Vizualizatsiya Usullari. 192-201
5. Manshurov, Sh.T.; Jonqobilov, J.T.. C++ Dasturlarlash Tilida n-Xonali Palindromik Sonlarni Topish. 173-178
6. Djabbarov, Odil Djurayevich; Jonqobilov, Jahongir Tirkashevich. TRIGONOMETRIK FUNKSIYALARNI EKVIVALENT TA’RIFI HAQIDA. 581-585
7. Муминов, Ф. М., Душатов, Н. Т., Миратоев, З. М., & Ибодуллаева, М. Ш. ОБ ОДНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ УРАВНЕНИЯ ТРЕТЬЕГО ПОРЯДКА СМЕШАННО-СОСТАВНОГО ТИПА. Innovative, educational, natural and social sciences, 2(6), 606-612.