APPLICATION OF VIETA'S THEOREM TO GEOMETRY

Авторы

  • Azimboy Ro‘zimboev Hamro o‘g‘li Автор
  • Abduxalilov Fazliddin To‘lanboy o‘g‘li Автор
  • Muhammadov Sherzod Shahobbidin o‘g‘li Автор

Ключевые слова:

Keywords: Vieta’s theorem, coordinate geometry, triangle centers, polynomial roots, intersection points, geometric transformations.

Аннотация

Annotation: This paper explores the application of Vieta’s theorem in geometry, particularly in coordinate geometry, triangle centers, and intersection problems. By leveraging relationships between polynomial roots and coefficients, Vieta’s theorem simplifies geometric calculations and enhances problem-solving strategies in plane geometry.

Библиографические ссылки

1. Cox, D. A., Little, J., & O'Shea, D. (2005). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer.

2. Shafarevich, I. R. (2013). Basic Algebraic Geometry 1: Varieties in Projective Space. Springer.

3. Hardy, G. H., & Wright, E. M. (2008). An Introduction to the Theory of Numbers. Oxford University Press.

4. Courant, R., & Robbins, H. (1996). What Is Mathematics? An Elementary Approach to Ideas and Methods. Oxford University Press.

5. Pedoe, D. (1988). Geometry: A Comprehensive Course. Dover Publications.

Опубликован

2025-02-27

Как цитировать

Azimboy Ro‘zimboev Hamro o‘g‘li, Abduxalilov Fazliddin To‘lanboy o‘g‘li, & Muhammadov Sherzod Shahobbidin o‘g‘li. (2025). APPLICATION OF VIETA’S THEOREM TO GEOMETRY. World Scientific Research Journal, 36(1), 249-252. https://scientific-jl.com/wsrj/article/view/3656

Похожие статьи

1-10 из 49

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.