SSIM CRITERIA FOR ASSESSING IMAGE QUALITY
##semicolon##
Keywords. SSIM, image quality assessment, structural similarity index, PSNR, MSE, image analysis, noise effect, contrast, brightness, visual quality, computer vision, compressed images, algorithmic evaluation.##article.abstract##
Abstract. This article reviews the theoretical and practical aspects of the SSIM (Structural Similarity Index) criterion used in image quality assessment. SSIM is a metric that determines the degree of similarity in images based on the human visual system, allowing you to evaluate the differences between the structural structure, brightness and contrast of an image. Compared to traditional criteria such as MSE (Mean Squared Error) and PSNR (Peak Signal-to-Noise Ratio), SSIM evaluates image quality closer to real viewing conditions. The article analyzes in detail the SSIM formula, its main components and calculation methods. It also discusses the practical application of SSIM, its advantages and limitations, and highlights its role in image quality assessment.
##submission.citations##
1. Saminjonovich, T. J. (2022). Algorithm for extraction of identification features in ear recognition. ACADEMICIA: An International Multidisciplinary Research Journal, 12(1), 232-237.
2. Fazilov, S. X., Mahkamov, A. A., & Jumayev, T. S. (2018). Algorithm for extraction of identification features in ear recognition. In Информатика: проблемы, методология, технологии (pp. 3-7).
3. Тoirov, B. Т., Jumaev, Т. S., & Toirov, O. T. (2021). Obyektlarni tanib olishda python dasturidan foydalanishning afzalliklari. Scientific progress, 2(7), 165-168.
4. Saminjonovich, J. T., & Solijonovich, T. D. (2023). Algorithm for improving the quality of image for the person identification. Galaxy International Interdisciplinary Research Journal, 11(9), 372-375.
5. FazilovSh.X., MahkamovA.A., JumayevT.S. Algorithm for extraction of identification features in ear recognition // Informatics: problems, methodology, technologies: Materials of the XVII international scientific and methodological conference. Voronezh, 2018.Vol. 2 - p. 3-7. p.
6. Mirzaev O.N., Djumaev T.S. Construction of personality recognition algorithms based on the image of the ears // Current state and prospects for the use of information technologies in management: Reports of the Republican Scientific and Technical Conference. September 7-8, 2015. CRPP and agro-industrial complex at TUIT, 342-348 p.
7. Jumaev T.S. Algorithm for distinguishing the characteristics of the image of the ear on the basis of discrete cosine displacement // TATU messages. - Tashkent, 2011. -№2. 74-78 p.
8. Mirzaev, N.M., Radjabov, S.S., & Djumaev, T.S. (2008). On the parameterization of models of recognition algorithms based on the assessment of the interrelation of features. Informatics and energy problems, (2-3), 23-27.
9. Jumayev, T. S., Mirzayev, N. S., & Makhkamov, A. S. (2015). Algorithms for segmentation of color images based on the allocation of strongly coupled elements. Studies of technical sciences, (4), 22-27.
10. Mirzayev, N. M., S. S. Radjabov, and T. S. Zhumayev. "O parametrizatsii modeley algoritmov raspoznavaniya, osnovannyh na otsenke vzaimosvyazannosti priznakov." Problemy informatiki i energetiki (2008): 2-3.
11. Mirzayev N. M., Radjabov S. S., Jumaev T. S. Isolation of characteristic features of facial images in personality recognition problems. Neurocomputers and their application.-2016.
12. Фазылов Ш. Х., Мирзаев Н. М., Махкамов А. А. Выделение геометрических признаков изображений ушных раковин //XI всероссийская научная конференция «нейрокомпьютеры и их применение. – 2013. – Т. 19.
13. Jumayev Turdali Saminjonovich, & Mahkamov Anvarjon Abdujabborovich. (2021). Algorithm for extraction of identification features in ear recognition. International Journal of Innovations in Engineering Research and Technology, 7(05), 216–220.