O‘ZBEKISTONDA INFLYATSIYA KO‘RSATKICHLARINI NEYRON TARMOQ ASOSIDA TAHLIL QILISH VA PROGNOZLASH
Ключевые слова:
Kalit so’zlar: Inflyatsiya, neyron tarmoq, sun’iy intellekt, bashoratlash, iqtisodiy ko‘rsatkichlar, LSTM, O‘zbekiston iqtisodiyoti, chuqur o‘rganish, vaqtli qatorli ma’lumotlar, prognozlash modeli.Аннотация
ANNOTATSIYA
Ushbu maqolada O‘zbekistonda inflyatsiya ko‘rsatkichlarini sun’iy neyron
tarmoqlar yordamida tahlil qilish va bashoratlash masalalari o‘rganiladi. Inflyatsiya
iqtisodiy barqarorlikni ta’minlashda muhim rol o‘ynovchi ko‘rsatkichlardan biri
hisoblanadi. An’anaviy statistik usullar inflyatsiyani bashoratlashda cheklovlarga ega
bo‘lib, so‘nggi yillarda sun’iy intellekt texnologiyalaridan, xususan, chuqur o‘rganish
asosidagi neyron tarmoqlardan foydalanish keng ommalashmoqda. Tadqiqotda
O‘zbekiston Respublikasi Davlat statistika qo‘mitasi va Markaziy bankining ochiq
ma’lumotlari asosida inflyatsiya ko‘rsatkichlari yig‘ilib, ular asosida sun’iy neyron
tarmoq modeli qurildi. Model natijalari an’anaviy regressiya modellari bilan
solishtirildi va neyron tarmoq modelining yuqori aniqlik ko‘rsatgani kuzatildi.
Tadqiqot natijalari inflyatsiya darajasini oldindan aniqlashda innovatsion
yondashuvlarning samaradorligini ko‘rsatadi hamda iqtisodiy siyosat yuritishda
foydali bo‘lishi mumkin.
Библиографические ссылки
FOYDALANILGAN ADABIYOTLAR:
1. Yangiboyevich Ishmetov, B. (2020). "Biznes iqtisodiy ko‘rsatkichlarni boshqarish
va bashoratlashda neyron tarmoqlarining o‘rni". Muhammad al-Xorazmiy nomidagi
TATU Urganch filiali, Axborot texnologiyalari kafedrasi.
2. Zaripova, M. D. "Improving the quality of training of high qualified personnel on
the basis of competence level assessment." Journal of Management Value & Ethics.
Jan.-March 21 (2021): 139-146.
3. Cheng, L., Zang, H., Trivedi, A., Srinivasan, D., Wei, Z., & Sun, G. (2024).
"Mitigating the impact of photovoltaic power ramps on intraday economic dispatch
using reinforcement forecasting". IEEE Transactions on Sustainable Energy, 15(1),
3–12.
4. Zhao, Q. (2020). "Research on prediction of enterprise economic growth based on
monetary policy regulation". 2020 International Conference on Robots &
Intelligent System (ICRIS), IEEE, Sanya, China.
5. Li, J., & Cong, S.F. (2021). "Prediction of financial economic growth trend based
on PVAR model". 2021 13th International Conference on Measuring Technology
and Mechatronics Automation (ICMTMA), IEEE, Beihai, China, 1–10.
6. Deng, Z., Tian, N., Liu, K., & Wu, D. (2021). "Trend prediction method of
economic fixed base index of power industry based on time series". 2021
International Conference on Wireless Communications and Smart Grid (ICWCSG),
IEEE, Hangzhou, China, 1–4.
7. Liu, C. (2021). "Prediction method of the industrial economic operation index
based on an improved genetic algorithm". 2021 IEEE International Conference on
Industrial Application of Artificial Intelligence (IAAI), IEEE, Harbin, China.
8. de Mendonca, H. F., & Almeida, A. F. G. (2018). "Importance of credibility for
business confidence: evidence from an emerging economy". Empirical Economics.
9. Sakaji, H., Kuramoto, R., Matsushima, H., Izumi, K., Shimada, T., & Sunakawa,
K. (2019). "Financial text data analytics framework for business confidence indices
and inter-industry relations". Proceedings of the First Workshop on Financial
Technology and Natural Language Processing, Macao, China, 40–46.
10. Ganiev, T., & Mamedov, R. (2020). "Neyron tarmoq modellarining iqtisodiy
prognozlashda samaradorligi". Iqtisodiy tadqiqotlar.