O‘ZBEKISTONDA INFLYATSIYA KO‘RSATKICHLARINI NEYRON TARMOQ ASOSIDA TAHLIL QILISH VA PROGNOZLASH

Авторы

  • Lobar Qurbonova Xo’jamurod qizi Автор

Ключевые слова:

Kalit so’zlar: Inflyatsiya, neyron tarmoq, sun’iy intellekt, bashoratlash, iqtisodiy ko‘rsatkichlar, LSTM, O‘zbekiston iqtisodiyoti, chuqur o‘rganish, vaqtli qatorli ma’lumotlar, prognozlash modeli.

Аннотация

ANNOTATSIYA 
Ushbu  maqolada  O‘zbekistonda  inflyatsiya  ko‘rsatkichlarini  sun’iy  neyron 
tarmoqlar yordamida tahlil qilish va bashoratlash masalalari o‘rganiladi. Inflyatsiya 
iqtisodiy  barqarorlikni  ta’minlashda  muhim  rol  o‘ynovchi  ko‘rsatkichlardan  biri 
hisoblanadi. An’anaviy statistik usullar inflyatsiyani bashoratlashda cheklovlarga ega 
bo‘lib, so‘nggi yillarda sun’iy intellekt texnologiyalaridan, xususan, chuqur o‘rganish 
asosidagi  neyron  tarmoqlardan  foydalanish  keng  ommalashmoqda.  Tadqiqotda 
O‘zbekiston  Respublikasi  Davlat  statistika  qo‘mitasi  va  Markaziy  bankining  ochiq 
ma’lumotlari  asosida  inflyatsiya  ko‘rsatkichlari  yig‘ilib,  ular  asosida  sun’iy  neyron 
tarmoq  modeli  qurildi.  Model  natijalari  an’anaviy  regressiya  modellari  bilan 
solishtirildi  va  neyron  tarmoq  modelining  yuqori  aniqlik  ko‘rsatgani  kuzatildi. 
Tadqiqot  natijalari  inflyatsiya  darajasini  oldindan  aniqlashda  innovatsion 
yondashuvlarning  samaradorligini  ko‘rsatadi  hamda  iqtisodiy  siyosat  yuritishda 
foydali bo‘lishi mumkin. 

Библиографические ссылки

FOYDALANILGAN ADABIYOTLAR:

1. Yangiboyevich Ishmetov, B. (2020). "Biznes iqtisodiy ko‘rsatkichlarni boshqarish

va bashoratlashda neyron tarmoqlarining o‘rni". Muhammad al-Xorazmiy nomidagi

TATU Urganch filiali, Axborot texnologiyalari kafedrasi.

2. Zaripova, M. D. "Improving the quality of training of high qualified personnel on

the basis of competence level assessment." Journal of Management Value & Ethics.

Jan.-March 21 (2021): 139-146.

3. Cheng, L., Zang, H., Trivedi, A., Srinivasan, D., Wei, Z., & Sun, G. (2024).

"Mitigating the impact of photovoltaic power ramps on intraday economic dispatch

using reinforcement forecasting". IEEE Transactions on Sustainable Energy, 15(1),

3–12.

4. Zhao, Q. (2020). "Research on prediction of enterprise economic growth based on

monetary policy regulation". 2020 International Conference on Robots &

Intelligent System (ICRIS), IEEE, Sanya, China.

5. Li, J., & Cong, S.F. (2021). "Prediction of financial economic growth trend based

on PVAR model". 2021 13th International Conference on Measuring Technology

and Mechatronics Automation (ICMTMA), IEEE, Beihai, China, 1–10.

6. Deng, Z., Tian, N., Liu, K., & Wu, D. (2021). "Trend prediction method of

economic fixed base index of power industry based on time series". 2021

International Conference on Wireless Communications and Smart Grid (ICWCSG),

IEEE, Hangzhou, China, 1–4.

7. Liu, C. (2021). "Prediction method of the industrial economic operation index

based on an improved genetic algorithm". 2021 IEEE International Conference on

Industrial Application of Artificial Intelligence (IAAI), IEEE, Harbin, China.

8. de Mendonca, H. F., & Almeida, A. F. G. (2018). "Importance of credibility for

business confidence: evidence from an emerging economy". Empirical Economics.

9. Sakaji, H., Kuramoto, R., Matsushima, H., Izumi, K., Shimada, T., & Sunakawa,

K. (2019). "Financial text data analytics framework for business confidence indices

and inter-industry relations". Proceedings of the First Workshop on Financial

Technology and Natural Language Processing, Macao, China, 40–46.

10. Ganiev, T., & Mamedov, R. (2020). "Neyron tarmoq modellarining iqtisodiy

prognozlashda samaradorligi". Iqtisodiy tadqiqotlar.

Опубликован

2025-04-25

Как цитировать

Lobar Qurbonova Xo’jamurod qizi. (2025). O‘ZBEKISTONDA INFLYATSIYA KO‘RSATKICHLARINI NEYRON TARMOQ ASOSIDA TAHLIL QILISH VA PROGNOZLASH . Ta’lim Innovatsiyasi Va Integratsiyasi, 44(1), 71-79. https://scientific-jl.com/tal/article/view/10427