EXPLORING THE IMPACT OF COGNITIVE, AFFECTIVE, AND PERSONALITY DIFFERENCES ON LEARNING PROCESSES

Authors

  • Qalandarova Sabohat Atabekovna Author

Keywords:

Keywords: individual differences, learning processes, cognitive style, metacognition, self-regulated learning, working memory capacity

Abstract

Individual differences play a critical role in shaping how learners engage with 
and internalize new information during various stages of the learning process. This 
study  investigates  the  extent  to  which  cognitive,  affective,  and  personality-related 
individual differences predict distinct learning processes—namely encoding, rehearsal, 
elaboration, and metacognitive regulation. Employing a mixed-methods design, 180 
undergraduate  participants  completed  standardized  measures  of  working  memory 
capacity, cognitive style, learning motivation, and trait anxiety. Quantitative data were 
analyzed using structural equation modeling to examine direct and indirect effects of 
individual  differences  on  learning  outcomes.  Complementing  this,  think-aloud 
protocols  from  a  purposive  subsample  of  30  students  were  thematically  coded  to 
identify  strategy  use  during  problem-solving  tasks.  Results  reveal  that  (a)  higher 
working memory capacity and reflective cognitive styles are positively associated with 
deeper elaboration strategies, (b) intrinsic motivation and low anxiety levels predict 
more  frequent  metacognitive  monitoring  and  regulation,  and  (c)  personality  traits 
linked  to  conscientiousness  moderate  the  relationship  between  cognitive  style  and 
rehearsal strategies. Qualitative themes illustrate how learners adapt their study tactics 
in  real  time,  confirming  and  extending  the  quantitative  model.  These  findings 
underscore  the  necessity  of  tailoring  instructional  design  to  accommodate 
multidimensional  individual  differences,  suggesting  that  adaptive  scaffolding  and 
metacognitive  prompts  can  enhance  learning  efficiency.  Implications  for  educators 
include integrating diagnostic assessments of learner profiles and embedding process-
oriented interventions to foster self-regulated learning. 

References

References:

1. Allinson, C. W., & Hayes, J. (1996). The Cognitive Style Index: A measure of

intuition–analysis for organizational research. Journal of Management Studies,

33(1), 119–135.

2. Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory,

math anxiety, and performance. Journal of Experimental Psychology: General,

130(2), 224–237.

3. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system

and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology

of learning and motivation (Vol. 2, pp. 89–195). Academic Press.

4. Baddeley, A. (2000). The episodic buffer: A new component of working memory?

Trends in Cognitive Sciences, 4(11), 417–423.

5. Chamorro-Premuzic, T., & Furnham, A. (2003). Personality predicts academic

performance: Evidence from two longitudinal university samples. Journal of

Research in Personality, 37(4), 319–338.

6. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for

memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–

684.

7. Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed

methods research (3rd ed.). Sage.

8. Crowne, D. P., & Marlowe, D. (1960). A new scale of social desirability

independent of psychopathology. Journal of Consulting Psychology, 24(4), 349–

352.

9. Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits:

Human needs and the self‐determination of behavior. Psychological Inquiry,

11(4), 227–268.

10. Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail,

and mixed‐mode surveys: The tailored design method (4th ed.). Wiley.

11. Dunlosky, J., & Metcalfe, J. (2009). Metacognition. Sage.

12. Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data

(Rev. ed.). MIT Press.

13. Evans, C. (2008). The effectiveness of metacognitive strategy instruction on

learning to learn. Educational Psychology Review, 20(3), 283–298.

14. Evans, C., & Waring, M. (2012). The impact of cognitive style on learning and

training. Journal of Applied Psychology, 97(2), 374–385.

15. Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and

cognitive performance: Attentional control theory. Emotion, 7(2), 336–353.

16. Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Sage.

17. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of

cognitive‐developmental inquiry. American Psychologist, 34(10), 906–911.

18. Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough?

Field Methods, 18(1), 59–82.

19. Hallgren, K. A. (2012). Computing inter‐rater reliability for observational data:

An overview and tutorial. Tutorials in Quantitative Methods for Psychology, 8(1),

23–34.

20. Jefferson, G. (2004). Glossary of transcript symbols with an introduction. In G.

H. Lerner (Ed.), Conversation analysis: Studies from the first generation (pp. 13–

31). John Benjamins.

21. Kline, R. B. (2015). Principles and practice of structural equation modeling (4th

ed.). Guilford Press.

22. Little, R. J. A. (1988). A test of missing completely at random for multivariate

data with missing values. Journal of the American Statistical Association,

83(404), 1198–1202.

23. Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis:

A methods sourcebook (3rd ed.). Sage.

24. Mueller, S. T., & Piper, B. J. (2014). The Psychology Experiment Building

Language (PEBL) and PEBL test battery. Behavior Research Methods, 46(2),

427–432.

25. O’Connor, M. C., & Paunonen, S. V. (2007). Big Five personality predictors of

post‐secondary academic performance. Personality and Individual Differences,

43(5), 971–990.

Published

2025-05-05

How to Cite

Qalandarova Sabohat Atabekovna. (2025). EXPLORING THE IMPACT OF COGNITIVE, AFFECTIVE, AND PERSONALITY DIFFERENCES ON LEARNING PROCESSES . Ta’lim Innovatsiyasi Va Integratsiyasi, 44(2), 334-345. https://scientific-jl.com/tal/article/view/11869