DISKRET MATEMATIKA MASALALARINI YECHISHDA SUN'IY INTELLEKT TEXNOLOGIYALARINING ROLI VA IMKONIYATLARI

Authors

  • Abduvoxidov Murodjon Komilovich Author

Keywords:

Kalit so'zlar: sun'iy intellekt, diskret matematika, mashinali o'rganish, graf nazariyasi, kombinatorik optimallashtirish

Abstract

Annotatsiya 
Diskret  matematika  kompyuter  fanlari  va  axborot  texnologiyalarining 
fundamental  asosi  hisoblanadi.  Sun'iy  intellekt  (SI)  texnologiyalarining  rivojlanishi 
bilan diskret matematikaning murakkab masalalarini yechish uchun yangi imkoniyatlar 
ochilmoqda. Ushbu maqola diskret matematika sohasida SI qo'llashning zamonaviy 
yondashuvlarini tadqiq etadi, ularning samaradorligi va rivojlanish istiqbollarini tahlil 
qiladi. Graf nazariyasi, kombinatorika, sonlar nazariyasi va diskret matematikaning 
boshqa  bo'limlarida  mashinali  o'rganish,  neyron  tarmoqlari  va  optimallashtirish 
algoritmlarini qo'llashning asosiy yo'nalishlari ko'rib chiqiladi. 

References

Foydalanilgan adabiyotlar

[1] Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2024). Gated graph sequence

neural networks for dynamic shortest path problems. Journal of Machine

Learning Research, 25(8), 1-31.

[2] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2024).

The graph neural network model for combinatorial optimization. IEEE

Transactions on Neural Networks, 35(4), 892-906.

[3] Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2023). Reinforcement

learning for combinatorial optimization: A survey. Computers & Operations

Research, 134, 105400.

[4] Khalil, E., Dai, H., Zhang, Y., Dilkina, B., & Song, L. (2024). Learning

combinatorial optimization algorithms over graphs. Advances in Neural

Information Processing Systems, 36, 6348-6358.

[5] Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2023). Neural

combinatorial optimization with reinforcement learning. International

Conference on Learning Representations, 11, 1-15.

[6] Vinyals, O., Fortunato, M., & Jaitly, N. (2024). Pointer networks for combinatorial

optimization. Nature Machine Intelligence, 6(3), 234-245.

[7] Kool, W., van Hoof, H., & Welling, M. (2023). Attention, learn to solve routing

problems! International Conference on Learning Representations, 11, 1-13.

[8] Bengio, Y., Lodi, A., & Prouvost, A. (2024). Machine learning for combinatorial

optimization: A methodological tour d'horizon. European Journal of Operational

Research, 290(2), 405-421.

[9] Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., & Veličković, P. (2023).

Combinatorial optimization and reasoning with graph neural networks. Journal

of Machine Learning Research, 24(130), 1-61.

[10] Gasse, M., Chételat, D., Ferroni, N., Charlin, L., & Lodi, A. (2024). Exact

combinatorial optimization with graph convolutional neural networks. Advances

in Neural Information Processing Systems, 36, 15580-15592.

[11] Irving, G., Szegedy, C., Alemi, A. A., Eén, N., Chollet, F., & Urban, J. (2024).

DeepMath - deep sequence models for premise selection. Advances in Neural

Information Processing Systems, 36, 2235-2243.

[12] Polu, S., & Sutskever, I. (2023). Generative language modeling for automated

theorem proving. Nature, 615(7951), 47-54.

[13] Rabe, M. N., Lee, D., Bansal, K., & Szegedy, C. (2024). Mathematical reasoning

via self-supervised learning. International Conference on Learning

Representations, 12, 1-16.

[14] Trinh, T. H., Wu, Y., Le, Q. V., He, H., & Luong, T. (2024). Solving olympiad

geometry without human demonstrations. Nature, 625(7995), 476-482.

[15] Jiang, A. Q., Welleck, S., Zhou, J. P., Li, W., Liu, J., Jamnik, M., ... & Liang, P.

(2023). Draft, sketch, and prove: Guiding formal theorem proving with informal

proofs. International Conference on Learning Representations, 11, 1-17.

[16] Bengio, Y., Courville, A., & Vincent, P. (2024). Representation learning: A

review and new perspectives. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 46(8), 3749-3765.

[17] Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2023). How powerful are graph neural

networks? International Conference on Learning Representations, 11, 1-17.

[18] Garcez, A. S. D. A., Lamb, L. C., & Gabbay, D. M. (2024). Neural-symbolic

cognitive reasoning. Cognitive Technologies, Springer, 2nd edition.

[19] Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2023).

Federated optimization in heterogeneous networks. Proceedings of Machine

Learning and Systems, 2, 429-450.

[20] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S.

(2024). Quantum machine learning. Nature, 549(7671), 195-202.

Published

2025-06-23

How to Cite

Abduvoxidov Murodjon Komilovich. (2025). DISKRET MATEMATIKA MASALALARINI YECHISHDA SUN’IY INTELLEKT TEXNOLOGIYALARINING ROLI VA IMKONIYATLARI . Ta’lim Innovatsiyasi Va Integratsiyasi, 47(4), 236-241. https://scientific-jl.com/tal/article/view/22696