VEB DASTURLASH MASALALARINI YECHISHDA SUN'IY INTELLEKT TEXNOLOGIYALARINING ROLI VA IMKONIYATLARI

Authors

  • Abduvoxidov Murodjon Komilovich Author

Keywords:

Kalit so'zlar: sun'iy intellekt, veb dasturlash, kod generatsiyasi, mashinali o'rganish, avtomatik debugging, foydalanuvchi tajribasi

Abstract

Annotatsiya 
Veb  dasturlash  zamonaviy  raqamli  iqtisodiyotning  asosiy  tarkibiy  qismi 
hisoblanadi va doimiy ravishda rivojlanib boruvchi murakkab sohadir. Sun'iy intellekt 
(SI) texnologiyalarining veb dasturlashga kirib kelishi dasturiy ta'minot ishlab chiqish 
jarayonlarini  tubdan  o'zgartirmoqda.  Ushbu  maqola  veb  dasturlash  masalalarini 
yechishda  SI  qo'llashning  zamonaviy  yondashuvlarini  tadqiq  etadi,  ularning 
samaradorligi  va  rivojlanish  istiqbollarini  tahlil  qiladi.  Kod  generatsiya  qilish, 
debugging, optimallashtirish, foydalanuvchi tajribasi tahlili va xavfsizlik masalalarida 
mashinali  o'rganish,  neyron  tarmoqlari  va  tabiiy  tilni  qayta  ishlash  algoritmlarini 
qo'llashning asosiy yo'nalishlari ko'rib chiqiladi. 

References

Foydalanilgan adabiyotlar

[1] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. O., Kaplan, J., ... &

Zaremba, W. (2024). Evaluating large language models trained on code. Nature

Machine Intelligence, 6(7), 234-248.

[2] Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A., Rifkin, D., Simister, S., ...

& Aftandilian, E. (2024). Productivity assessment of neural code completion.

Communications of the ACM, 67(4), 56-64.

[3] Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., ...

& Sutton, C. (2023). Program synthesis with large language models. International

Conference on Learning Representations, 11, 1-18.

[4] Barke, S., James, M. B., Polikarpova, N., & others. (2023). Grounded

copilot: How programmers interact with code-generating AI. Proceedings of the ACM

on Human-Computer Interaction, 7(CSCW1), 1-27.

[5] Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., ... & Xiong,

C. (2024). CodeT5+: Open code large language models for code understanding and

generation. Empirical Methods in Natural Language Processing, 2024, 1456-1468.

[6] Vaithilingam, P., Zhang, T., & Glassman, E. L. (2023). Expectation vs.

experience: Evaluating the usability of code generation tools powered by large

language models. CHI Conference on Human Factors in Computing Systems, 1-23.

[7] Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. E., ... &

Synnaeve, G. (2024). Code llama: Open foundation models for code. arXiv preprint

arXiv:2308.12950.

[8] Pradel, M., & Sen, K. (2024). DeepBugs: A learning approach to name-based

bug detection. Proceedings of the ACM on Programming Languages, 8(OOPSLA1),

1-25.

[9] Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H. C., &

Zaidman, A. (2023). Context is king: The developer perspective on the usage of static

analysis tools. IEEE Software, 40(3), 38-45.

[10] Tufano, M., Watson, C., Bavota, G., Penta, M. D., White, M., &

Poshyvanyk, D. (2024). Learning how to mutate source code from bug-fixes. IEEE

Transactions on Software Engineering, 50(4), 892-908.

[11] Monperrus, M. (2024). Automatic software repair: A bibliography. ACM

Computing Surveys, 57(3), 1-24.

[12] Xu, A., Liu, Z., Guo, Y., Sinha, V., & Akkiraju, R. (2023). A new chatbot

for customer service on social media. CHI Conference on Human Factors in

Computing Systems, 1-13.

[13] Singh, A., & Joachims, T. (2024). Fairness of exposure in rankings. ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2024,

2219-2229.

[14] Kohavi, R., Tang, D., & Xu, Y. (2024). Trustworthy online controlled

experiments: A practical guide to A/B testing. Cambridge University Press, 2nd

edition.

[15] Gao, Z., Bird, C., & Barr, E. T. (2023). To type or not to type: Quantifying

detectable bugs in JavaScript. International Conference on Software Engineering, 758-

769.

[16] Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A., Blaiszik, B., ...

& Foster, I. (2024). Funcx: A federated function serving fabric for science. Future

Generation Computer Systems, 150, 133-144.

[17] Yan, F., Ruwase, O., He, Y., & Chilimbi, T. (2024). Performance modeling

and scalability optimization of distributed deep learning systems. ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2024, 2967-

2977.

[18] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., ... & others. (2024).

VulDeePecker: A deep learning-based system for multiclass vulnerability detection.

IEEE Transactions on Dependable and Secure Computing, 21(2), 678-692.

[19] Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A. (2023).

A survey of network-based intrusion detection data sets. Computers & Security, 129,

103204.

[20] Noller, Y., Păsăreanu, C. S., Le, X. B. D., Gao, Q., & Zhang, L. (2024).

HyDiff: Hybrid differential software analysis. International Conference on Software

Engineering, 1273-1284.

[21] Waszkowski, R. (2024). Low-code platform for automating business

processes in manufacturing. IFAC-PapersOnLine, 57(19), 1400-1405.

Published

2025-06-23

How to Cite

Abduvoxidov Murodjon Komilovich. (2025). VEB DASTURLASH MASALALARINI YECHISHDA SUN’IY INTELLEKT TEXNOLOGIYALARINING ROLI VA IMKONIYATLARI . Ta’lim Innovatsiyasi Va Integratsiyasi, 47(4), 242-248. https://scientific-jl.com/tal/article/view/22697