BAHOLASH TIZIMINING RAQAMLI TRANSFORMATSIYASI: O‘QUVCHINING O‘ZLASHTIRISH JARAYONINI REAL VAQT REJIMIDA AI ASOSIDA TAHLIL QILISH.
Keywords:
Kalit so‘zlar: Sun’iy intellekt, baholash tizimi, raqamli transformatsiya, real vaqt tahlili, o‘quvchi o‘zlashtirishi, ta’lim texnologiyalari, shaxsiylashtirilgan o‘qitish.Abstract
Annotatsiya: Ushbu maqolada zamonaviy taʼlim tizimida baholashning raqamli
transformatsiyasi, xususan, sunʼiy intellekt (AI) yordamida o‘quvchilar bilimini real
vaqt rejimida tahlil qilish imkoniyatlari ko‘rib chiqiladi. AI asosidagi tahlil vositalari
o‘quvchilar individual o‘zlashtirish jarayonlarini aniqlash, kamchiliklarni erta aniqlash
va shaxsiylashtirilgan o‘qitishni ta’minlashda muhim vosita sifatida namoyon
bo‘lmoqda. Maqolada baholash tizimlarining raqamli shaklga o‘tishidagi dolzarb
jihatlar, xalqaro tajribalar, ilmiy adabiyotlar, metodologik yondashuvlar, tajriba
natijalari hamda tavsiyalar bayon etiladi.
References
Adabiyotlar.
1. Mirchi, N.; Bissonnette, V.; Yilmaz, R.; Ledwos, N.; Winkler-Schwartz, A.; Del
Maestro, R.F. The Virtual Operative Assistant: An explainable artificial intelligence
tool for simulation-based training in surgery and medicine. PLoS ONE 2020, 15,
e0229596. [CrossRef]
2. Houwink, E.J.F.; Kasteleyn, M.J.; Alpay, L.; Pearce, C.; Butler-Henderson, K.;
Meijer, E.; van Kampen, S.; Versluis, A.; Bonten, T.N.; van Dalfsen, J.H.; et al.
SERIES: eHealth in primary care. Part 3: eHealth education in primary care. Eur. J.
Gen. Pract. 2020, 26, 108–118. [CrossRef]
3. Ocaña-Fernández, Y.; Valenzuela-Fernández, L.A.; Garro-Aburto, L.L.
Inteligencia artificial y sus implicaciones en la educación superior. Propósitos y
Represent. 2019, 7. [CrossRef]
4. García-Tudela, P.A.; Prendes-Espinosa, M.P.; Solano-Fernández, I.M. Smart
learning environments and ergonomics: An approach to the state of the question. J.
New Approaches Educ. Res. 2020, 9, 245–258. [CrossRef]
5. Fry, E. Teaching Machine Dichotomy: Skinner vs. Pressey. Psychol. Rep. 1960, 6,
11–14. [CrossRef]
6. UNESCO. Beijing Consensus on Artificial Intelligence and Education; UNESCO:
Paris, France, 2019.
7. Chew, E.; Chua, X.N. Robotic Chinese language tutor: Personalising progress
assessment and feedback or taking over your job? Horizont 2020, 28, 113–124.
[CrossRef]
8. Gálvez, J.; Conejo, R.; Guzmán, E. Statistical Techniques to Explore the Quality
of Constraints in Constraint-Based Modeling Environments. Int. J. Artif. Intell.
Educ. 2013, 23, 22–49. [CrossRef]
9. Narciss, S.; Sosnovsky, S.; Schnaubert, L.; Andrès, E.; Eichelmann, A.; Goguadze,
G.; Melis, E. Exploring feedback and student characteristics relevant for
personalizing feedback strategies. Comput. Educ. 2014, 71, 56–76. [CrossRef]