KO‘P VAZNLI BOG‘LANGAN LOGISTIK REGRESSIYA USULI

Authors

  • Shohida Abduraimova Author
  • Qabul Xudaybergenov Author

Keywords:

Kalit so’zlar: Logistik regressiya, neyron, tasniflash, vazn koeffitsienti

Abstract

Abstrakt:Ushbu ishda yangi turdagi logistik regressiya modeli taklif qilingan. 
Bu  modelda  vazn  koeffitsiyentlari  o‘lchami  bitta  koeffitsiyentdan  bir  nechta 
koeffitsiyentga kengaytiriladi. Ya’ni, har bir kirish va yashirin qatlam o‘rtasida yagona 
bog‘lanish koeffitsiyenti emas, balki bir nechta bog‘lanish mavjud bo‘ladi. CIFAR-10, 
CDC  Diabet  va  boshqa  ma’lumotlar  to‘plamlarida  o‘tkazilgan  hisoblash  tajribalari 
shuni ko‘rsatdiki,  mavjud  logistik  regressiya  modelining ishlashi kirish va  yashirin 
qatlam o‘rtasidagi bog‘langan vaznlarning o‘lchamini kengaytirish orqali yaxshilanishi 
mumkin. 

References

Adabiyotlar

1. Brian, K., Ian Q, W., & Teskey, G. C. (2014). An introduction to brain and

behavior (1st Ed.). Ormerod, Spring 2018. ISBN: 10- 1-4641-0601-0.

2. Chen, Y. L., Rinks, D., & Tang, K. (1997). Critical path in an activity network

with time constraints. European Journal of Operational Research, 100(1), 122–

133. https://doi.org/10.1016/S0377-2217(96)00140-3 Cheng, C.,

3. Feng, X., Huang, J., Jiao, Y., & Zhang, S. (2022). ℓ0-Regularized high-

dimensional accelerated failure time model. Computational Statistics & Data

Analysis, 170, 107430.

Published

2025-03-18

How to Cite

Shohida Abduraimova, & Qabul Xudaybergenov. (2025). KO‘P VAZNLI BOG‘LANGAN LOGISTIK REGRESSIYA USULI . Ta’lim Innovatsiyasi Va Integratsiyasi, 41(1), 232-234. https://scientific-jl.com/tal/article/view/5354